Free Access
Issue |
Med Sci (Paris)
Volume 35, Number 2, Février 2019
|
|
---|---|---|
Page(s) | 181 - 186 | |
Section | Forum | |
DOI | https://doi.org/10.1051/medsci/2019005 | |
Published online | 18 February 2019 |
- Fenner F, Henderson DA, Arita I, et al. Smallpox and its Eradication. Geneva, Switzerland: World Health Organization, 1988: 1793. [Google Scholar]
- Moore ZS, Seward JF, Lane JM. Smallpox. Lancet 2006 ; 367 : 425–435. [CrossRef] [Google Scholar]
- Faria NR, Rambaut A, Suchard MA, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014 ; 346 : 56–61. [Google Scholar]
- Kupferschmidt K.. Labmade smallpox is possible, study shows. Science 2017 ; 357 : 115–116. [Google Scholar]
- Hopkins DR. Disease eradication. N Engl J Med 2013 ; 368 : 54–63. [CrossRef] [PubMed] [Google Scholar]
- Najera JA, Gonzalez-Silva M, Alonso PL. Some lessons for the future from the Global malaria eradication programme (1955–1969). PLoS Med 2011 ; 8 : e1000412. [CrossRef] [PubMed] [Google Scholar]
- Adams A, Salisbury DM. Eradicating polio. Science 2015 ; 350 : 609. [Google Scholar]
- Dowdle WR. The principles of disease elimination and eradication. Bull WHO 1998 ; 76 : 22–25. [Google Scholar]
- Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005 ; 310 : 77–80. [Google Scholar]
- Mbaeyi C, Wadood ZM, Moran T, et al. Strategic response to an outbreak of circulating vaccine-derived poliovirus type 2 - Syria, 2017–2018. MMWR Morb Mortal Wkly Rep 2018 ; 67 : 690–694. [CrossRef] [PubMed] [Google Scholar]
- Kew OM, Sutter RW, de Gourville EM, et al. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 2005 ; 59 : 587–635. [Google Scholar]
- Delpeyroux F, Colbere-Garapin F, Razafindratsimandresy R, et al. Éradication de la poliomyélite et émergence de poliovirus pathogènes dérivés du vaccin : de Madagascar au Cameroun. Med Sci (Paris) 2013 ; 29 : 1034–1041. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jorba J, Diop OM, Iber J, et al. Update on vaccine-derived polioviruses - worldwide, January 2017-June 2018. MMWR Morb Mortal Wkly Rep 2018 ; 67 : 1189–1194. [CrossRef] [PubMed] [Google Scholar]
- Peng X, Hu X, Salazar MA. On reducing the risk of vaccine-associated paralytic poliomyelitis in the global transition from oral to inactivated poliovirus vaccine. Lancet 2018 ; 392 : 610–612. [CrossRef] [PubMed] [Google Scholar]
- Blake IM, Pons-Salort M, Molodecky NA, et al. Type 2 poliovirus detection after global withdrawal of trivalent oral vaccine. N Engl J Med 2018 ; 379 : 834–845. [CrossRef] [PubMed] [Google Scholar]
- Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis 2014 ; 210 : suppl 1 S380–S389. [PubMed] [Google Scholar]
- Taniguchi T, Weissmann C. Inhibition of Qbeta RNA 70S ribosome initiation complex formation by an oligonucleotide complementary to the 3‘ terminal region of E. coli 16S ribosomal RNA. Nature 1978 ; 275 : 770–772. [CrossRef] [PubMed] [Google Scholar]
- Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 1981 ; 214 : 916–919. [Google Scholar]
- Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 1989 ; 59 : 1107–1113. [CrossRef] [PubMed] [Google Scholar]
- Schnell MJ, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA. EMBO J 1994 ; 13 : 4195–4203. [PubMed] [Google Scholar]
- Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA 2002 ; 99 : 12415–12420. [CrossRef] [Google Scholar]
- Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 2002 ; 297 : 1016–1018. [Google Scholar]
- Smith HO, Hutchison CA, 3rd, Pfannkoch C, Venter JC. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 2003 ; 100 : 15440–15445. [CrossRef] [Google Scholar]
- Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 Spanish influenza pandemic. Bull Hist Med 2002 ; 76 : 105–115. [CrossRef] [PubMed] [Google Scholar]
- Zylberman P.. Comme en 1918 ! La grippe espagnole et nous. Med Sci (Paris) 2006 ; 22 : 767–770. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 Spanish influenza virus. Science 1997 ; 275 : 1793–1796. [Google Scholar]
- Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 1999 ; 96 : 1651–1656. [CrossRef] [Google Scholar]
- Tournier JN, Garin D. Deadly paleoviruses: a bioweapon Pandora‘s box?. Lancet Infect Dis 2006 ; 6 : 254–255. [CrossRef] [PubMed] [Google Scholar]
- Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One 2018 ; 13 : e0188453. [CrossRef] [PubMed] [Google Scholar]
- Tulman ER, Delhon G, Afonso CL, et al. Genome of horsepox virus. J Virol 2006 ; 80 : 9244–9258. [CrossRef] [PubMed] [Google Scholar]
- Kupferschmidt K.. Critics see only risks, no benefits in horsepox paper. Science 2018 ; 359 : 375–376. [Google Scholar]
- Koblentz GD. A Critical analysis of the scientific and commercial rationales for the de novo synthesis of Horsepox virus. mSphere 2018; 3. [Google Scholar]
- DiEuliis D, Gronvall GK. A holistic assessment of the risks and benefits of the synthesis of Horsepox virus. mSphere 2018; 3. [Google Scholar]
- Imperiale MJ. Re-creation of Horsepox virus. mSphere 2018 ; 3. [Google Scholar]
- Coyne CB. Horsepox: framing a dual use research of concern debate. PLoS Pathog 2018 ; 14 : e1007344. [CrossRef] [PubMed] [Google Scholar]
- Inglesby T.. Horsepox and the need for a new norm, more transparency, and stronger oversight for experiments that pose pandemic risks. PLoS Pathog 2018 ; 14 : e1007129. [CrossRef] [PubMed] [Google Scholar]
- Thiel V.. Synthetic viruses. Anything new?. PLoS Pathog 2018 ; 14 : e1007019. [CrossRef] [PubMed] [Google Scholar]
- Noyce RS, Evans DH. Synthetic horsepox viruses and the continuing debate about dual use research. PLoS Pathog 2018 ; 14 : e1007025. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.