Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 2, Février 2019
Page(s) 181 - 186
Section Forum
DOI https://doi.org/10.1051/medsci/2019005
Publié en ligne 18 février 2019
  1. Fenner F, Henderson DA, Arita I, et al. Smallpox and its Eradication. Geneva, Switzerland: World Health Organization, 1988: 1793. [Google Scholar]
  2. Moore ZS, Seward JF, Lane JM. Smallpox. Lancet 2006 ; 367 : 425–435. [CrossRef] [Google Scholar]
  3. Faria NR, Rambaut A, Suchard MA, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014 ; 346 : 56–61. [Google Scholar]
  4. Kupferschmidt K.. Labmade smallpox is possible, study shows. Science 2017 ; 357 : 115–116. [Google Scholar]
  5. Hopkins DR. Disease eradication. N Engl J Med 2013 ; 368 : 54–63. [CrossRef] [PubMed] [Google Scholar]
  6. Najera JA, Gonzalez-Silva M, Alonso PL. Some lessons for the future from the Global malaria eradication programme (1955–1969). PLoS Med 2011 ; 8 : e1000412. [CrossRef] [PubMed] [Google Scholar]
  7. Adams A, Salisbury DM. Eradicating polio. Science 2015 ; 350 : 609. [Google Scholar]
  8. Dowdle WR. The principles of disease elimination and eradication. Bull WHO 1998 ; 76 : 22–25. [Google Scholar]
  9. Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005 ; 310 : 77–80. [Google Scholar]
  10. Mbaeyi C, Wadood ZM, Moran T, et al. Strategic response to an outbreak of circulating vaccine-derived poliovirus type 2 - Syria, 2017–2018. MMWR Morb Mortal Wkly Rep 2018 ; 67 : 690–694. [CrossRef] [PubMed] [Google Scholar]
  11. Kew OM, Sutter RW, de Gourville EM, et al. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 2005 ; 59 : 587–635. [Google Scholar]
  12. Delpeyroux F, Colbere-Garapin F, Razafindratsimandresy R, et al. Éradication de la poliomyélite et émergence de poliovirus pathogènes dérivés du vaccin : de Madagascar au Cameroun. Med Sci (Paris) 2013 ; 29 : 1034–1041. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Jorba J, Diop OM, Iber J, et al. Update on vaccine-derived polioviruses - worldwide, January 2017-June 2018. MMWR Morb Mortal Wkly Rep 2018 ; 67 : 1189–1194. [CrossRef] [PubMed] [Google Scholar]
  14. Peng X, Hu X, Salazar MA. On reducing the risk of vaccine-associated paralytic poliomyelitis in the global transition from oral to inactivated poliovirus vaccine. Lancet 2018 ; 392 : 610–612. [CrossRef] [PubMed] [Google Scholar]
  15. Blake IM, Pons-Salort M, Molodecky NA, et al. Type 2 poliovirus detection after global withdrawal of trivalent oral vaccine. N Engl J Med 2018 ; 379 : 834–845. [CrossRef] [PubMed] [Google Scholar]
  16. Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis 2014 ; 210 : suppl 1 S380–S389. [PubMed] [Google Scholar]
  17. Taniguchi T, Weissmann C. Inhibition of Qbeta RNA 70S ribosome initiation complex formation by an oligonucleotide complementary to the 3‘ terminal region of E. coli 16S ribosomal RNA. Nature 1978 ; 275 : 770–772. [CrossRef] [PubMed] [Google Scholar]
  18. Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 1981 ; 214 : 916–919. [Google Scholar]
  19. Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 1989 ; 59 : 1107–1113. [CrossRef] [PubMed] [Google Scholar]
  20. Schnell MJ, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA. EMBO J 1994 ; 13 : 4195–4203. [PubMed] [Google Scholar]
  21. Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA 2002 ; 99 : 12415–12420. [CrossRef] [Google Scholar]
  22. Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 2002 ; 297 : 1016–1018. [Google Scholar]
  23. Smith HO, Hutchison CA, 3rd, Pfannkoch C, Venter JC. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 2003 ; 100 : 15440–15445. [CrossRef] [Google Scholar]
  24. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 Spanish influenza pandemic. Bull Hist Med 2002 ; 76 : 105–115. [CrossRef] [PubMed] [Google Scholar]
  25. Zylberman P.. Comme en 1918 ! La grippe espagnole et nous. Med Sci (Paris) 2006 ; 22 : 767–770. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 Spanish influenza virus. Science 1997 ; 275 : 1793–1796. [Google Scholar]
  27. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 1999 ; 96 : 1651–1656. [CrossRef] [Google Scholar]
  28. Tournier JN, Garin D. Deadly paleoviruses: a bioweapon Pandora‘s box?. Lancet Infect Dis 2006 ; 6 : 254–255. [CrossRef] [PubMed] [Google Scholar]
  29. Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One 2018 ; 13 : e0188453. [CrossRef] [PubMed] [Google Scholar]
  30. Tulman ER, Delhon G, Afonso CL, et al. Genome of horsepox virus. J Virol 2006 ; 80 : 9244–9258. [CrossRef] [PubMed] [Google Scholar]
  31. Kupferschmidt K.. Critics see only risks, no benefits in horsepox paper. Science 2018 ; 359 : 375–376. [Google Scholar]
  32. Koblentz GD. A Critical analysis of the scientific and commercial rationales for the de novo synthesis of Horsepox virus. mSphere 2018; 3. [Google Scholar]
  33. DiEuliis D, Gronvall GK. A holistic assessment of the risks and benefits of the synthesis of Horsepox virus. mSphere 2018; 3. [Google Scholar]
  34. Imperiale MJ. Re-creation of Horsepox virus. mSphere 2018 ; 3. [Google Scholar]
  35. Coyne CB. Horsepox: framing a dual use research of concern debate. PLoS Pathog 2018 ; 14 : e1007344. [CrossRef] [PubMed] [Google Scholar]
  36. Inglesby T.. Horsepox and the need for a new norm, more transparency, and stronger oversight for experiments that pose pandemic risks. PLoS Pathog 2018 ; 14 : e1007129. [CrossRef] [PubMed] [Google Scholar]
  37. Thiel V.. Synthetic viruses. Anything new?. PLoS Pathog 2018 ; 14 : e1007019. [CrossRef] [PubMed] [Google Scholar]
  38. Noyce RS, Evans DH. Synthetic horsepox viruses and the continuing debate about dual use research. PLoS Pathog 2018 ; 14 : e1007025. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.