Free Access
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 116 - 120
Published online 07 November 2018
  1. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, and Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer‘s & Dementia 2013; 9: 63–75. e2. [CrossRef] [Google Scholar]
  2. Prince M, Wino A, Guerchet M, Ali G, Wu Y, and Prina M. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. 2015. Alzheimer’s Disease International, London, 2016. [Google Scholar]
  3. Baranello RJ Bharani KL Padmaraju V Chopra N Lahiri DK Greig NH et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer‘s disease. Curr Alzheimer Res 2015 ; 12 : 32–46. [CrossRef] [PubMed] [Google Scholar]
  4. Latta CH Brothers HM Wilcock DM Neuroinflammation in Alzheimer‘s disease; A source of heterogeneity and target for personalized therapy. Neuroscience 2015 ; 302 : 103–111. [CrossRef] [PubMed] [Google Scholar]
  5. Wright AL Zinn R Hohensinn B Konen LM Beynon SB Tan RP et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One 2013 ; 8 : e59586. [CrossRef] [PubMed] [Google Scholar]
  6. Heneka MT Kummer MP Latz E Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014 ; 14 : 463–477. [CrossRef] [PubMed] [Google Scholar]
  7. Heneka MT Carson MJ El Khoury J Landreth GE Brosseron F Feinstein DL et al. Neuroinflammation in Alzheimer‘s disease. The Lancet Neurology 2015 ; 14 : 388–405. [CrossRef] [PubMed] [Google Scholar]
  8. Serrano-Pozo A Muzikansky A Gomez-Isla T Growdon JH Betensky RA Frosch MP et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013 ; 72 : 462–471. [CrossRef] [PubMed] [Google Scholar]
  9. Sarma JV Ward PA The complement system. Cell and tissue research 2011 ; 343 : 227–235. [CrossRef] [PubMed] [Google Scholar]
  10. McGeer PL, Lee M, and McGeer EG. A review of human diseases caused or exacerbated by aberrant complement activation. Neurobiology of Aging 2016. [Google Scholar]
  11. Crehan H Hardy J Pocock J Microglia, Alzheimer‘s disease, and complement. Int J Alzheimers Dis 2012 ; 2012 : 983640. [PubMed] [Google Scholar]
  12. Doens D Fernandez PL Microglia receptors and their implications in the response to amyloid beta for Alzheimer‘s disease pathogenesis. J Neuroinflammation 2014 ; 11 : 48. [CrossRef] [PubMed] [Google Scholar]
  13. Ager RR Fonseca MI Chu SH Sanderson SD Taylor SM Woodruff TM et al. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer‘s disease. J Neurochem 2010 ; 113 : 389–401. [CrossRef] [PubMed] [Google Scholar]
  14. Fonseca MI McGuire SO Counts SE Tenner AJ Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013 ; 10 : 25. [PubMed] [Google Scholar]
  15. Girke G Kohl B Busch C John T Godkin O Ertel W et al. Tenocyte activation and regulation of complement factors in response to in vitro cell injury. Mol Immunol 2014 ; 60 : 14–22. [CrossRef] [PubMed] [Google Scholar]
  16. Hernandez MX Namiranian P Nguyen E Fonseca MI Tenner AJ C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 2017 ; 9 : 1759091416687871. [Google Scholar]
  17. Landlinger C Oberleitner L Gruber P Noiges B Yatsyk K Santic R et al. Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer‘s disease. J Neuroinflammation 2015 ; 12 : 150. [CrossRef] [PubMed] [Google Scholar]
  18. Fonseca MI Ager RR Chu SH Yazan O Sanderson SD LaFerla FM et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer‘s disease. J Immunol 2009 ; 183 : 1375–1383. [CrossRef] [PubMed] [Google Scholar]
  19. Nicolas CS Amici M Bortolotto ZA Doherty A Csaba Z Fafouri A et al. The role of JAK-STAT signaling within the CNS. Jak-Stat 2013 ; 2 : e22925. [CrossRef] [PubMed] [Google Scholar]
  20. Yin L, Dai Q, Jiang P, Zhu L, Dai H, Yao Z, et al. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. NeuroToxicology 2017. [Google Scholar]
  21. Bai B Horlad H Saito Y Ohnishi K Fujiwara Y Takeya M et al. Role of Stat3 activation in cell-cell interaction between B-cell lymphoma and macrophages: the in vitro study. J Clin Exp Hematop 2013 ; 53 : 127–133. [CrossRef] [PubMed] [Google Scholar]
  22. Lee WK Lee SY Choi JE Seok Y Lee EB Lee HC et al. Development of a prognosis-prediction model incorporating genetic polymorphism with pathologic stage in stage I non-small cell lung cancer: A multicenter study. Thorac Cancer 2017 ; 8 : 251–259. [CrossRef] [PubMed] [Google Scholar]
  23. Cribbs DH Berchtold NC Perreau V Coleman PD Rogers J Tenner AJ et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012 ; 9 : 179. [PubMed] [Google Scholar]
  24. Wyss-Coray T Rogers J Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012 ; 2 : a006346. [Google Scholar]
  25. Zhou J Fonseca MI Pisalyaput K Tenner AJ Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 2008 ; 106 : 2080–2092. [CrossRef] [PubMed] [Google Scholar]
  26. Farkas I Takahashi M Fukuda A Yamamoto N Akatsu H Baranyi L et al. Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease. J Immunol 2003 ; 170 : 5764–5771. [CrossRef] [PubMed] [Google Scholar]
  27. McGeer EG McGeer PL Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 2010 ; 19 : 355–361. [CrossRef] [PubMed] [Google Scholar]
  28. Brandenburg LO Konrad M Wruck CJ Koch T Lucius R Pufe T Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1–42-induced signal transduction in glial cells. J Neurochem 2010 ; 113 : 749–760. [CrossRef] [PubMed] [Google Scholar]
  29. Ries M Sastre M Mechanisms of Abeta Clearance and Degradation by Glial Cells. Front Aging Neurosci 2016 ; 8 : 160. [PubMed] [Google Scholar]
  30. Stevens B Allen NJ Vazquez LE Howell GR Christopherson KS Nouri N et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007 ; 131 : 1164–1178. [CrossRef] [PubMed] [Google Scholar]
  31. Schafer DP Lehrman EK Kautzman AG Koyama R Mardinly AR Yamasaki R et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012 ; 74 : 691–705. [CrossRef] [PubMed] [Google Scholar]
  32. Wan J Fu AK Ip FC Ng H-K Hugon J Page G et al. Tyk2/STAT3 signaling mediates β-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. Journal of neuroscience 2010 ; 30 : 6873–6881. [CrossRef] [Google Scholar]
  33. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 2015; 35: 2817–29. [CrossRef] [PubMed] [Google Scholar]
  34. Huang C Ma R Sun S Wei G Fang Y Liu R et al. JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol 2008 ; 204 : 118–125. [CrossRef] [PubMed] [Google Scholar]
  35. Xiong J Wang C Chen H Hu Y Tian L Pan J et al. Abeta-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci 2014 ; 124 : 609–620. [CrossRef] [Google Scholar]
  36. Zhang Y Li S He H Han Q Wang B Zhu Y Influence of Tanshinone IIA on apoptosis of human esophageal carcinoma Eca-109 cells and its molecular mechanism. Thorac Cancer 2017 ; 8 : 296–303. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.