Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 116 - 120
DOI https://doi.org/10.1051/medsci/201834f120
Publié en ligne 7 novembre 2018
  1. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, and Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer‘s & Dementia 2013; 9: 63–75. e2. [CrossRef] [Google Scholar]
  2. Prince M, Wino A, Guerchet M, Ali G, Wu Y, and Prina M. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. 2015. Alzheimer’s Disease International, London, 2016. [Google Scholar]
  3. Baranello RJ Bharani KL Padmaraju V Chopra N Lahiri DK Greig NH et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer‘s disease. Curr Alzheimer Res 2015 ; 12 : 32–46. [CrossRef] [PubMed] [Google Scholar]
  4. Latta CH Brothers HM Wilcock DM Neuroinflammation in Alzheimer‘s disease; A source of heterogeneity and target for personalized therapy. Neuroscience 2015 ; 302 : 103–111. [CrossRef] [PubMed] [Google Scholar]
  5. Wright AL Zinn R Hohensinn B Konen LM Beynon SB Tan RP et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One 2013 ; 8 : e59586. [CrossRef] [PubMed] [Google Scholar]
  6. Heneka MT Kummer MP Latz E Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014 ; 14 : 463–477. [CrossRef] [PubMed] [Google Scholar]
  7. Heneka MT Carson MJ El Khoury J Landreth GE Brosseron F Feinstein DL et al. Neuroinflammation in Alzheimer‘s disease. The Lancet Neurology 2015 ; 14 : 388–405. [CrossRef] [PubMed] [Google Scholar]
  8. Serrano-Pozo A Muzikansky A Gomez-Isla T Growdon JH Betensky RA Frosch MP et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013 ; 72 : 462–471. [CrossRef] [PubMed] [Google Scholar]
  9. Sarma JV Ward PA The complement system. Cell and tissue research 2011 ; 343 : 227–235. [CrossRef] [PubMed] [Google Scholar]
  10. McGeer PL, Lee M, and McGeer EG. A review of human diseases caused or exacerbated by aberrant complement activation. Neurobiology of Aging 2016. [Google Scholar]
  11. Crehan H Hardy J Pocock J Microglia, Alzheimer‘s disease, and complement. Int J Alzheimers Dis 2012 ; 2012 : 983640. [PubMed] [Google Scholar]
  12. Doens D Fernandez PL Microglia receptors and their implications in the response to amyloid beta for Alzheimer‘s disease pathogenesis. J Neuroinflammation 2014 ; 11 : 48. [CrossRef] [PubMed] [Google Scholar]
  13. Ager RR Fonseca MI Chu SH Sanderson SD Taylor SM Woodruff TM et al. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer‘s disease. J Neurochem 2010 ; 113 : 389–401. [CrossRef] [PubMed] [Google Scholar]
  14. Fonseca MI McGuire SO Counts SE Tenner AJ Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013 ; 10 : 25. [PubMed] [Google Scholar]
  15. Girke G Kohl B Busch C John T Godkin O Ertel W et al. Tenocyte activation and regulation of complement factors in response to in vitro cell injury. Mol Immunol 2014 ; 60 : 14–22. [CrossRef] [PubMed] [Google Scholar]
  16. Hernandez MX Namiranian P Nguyen E Fonseca MI Tenner AJ C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 2017 ; 9 : 1759091416687871. [Google Scholar]
  17. Landlinger C Oberleitner L Gruber P Noiges B Yatsyk K Santic R et al. Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer‘s disease. J Neuroinflammation 2015 ; 12 : 150. [CrossRef] [PubMed] [Google Scholar]
  18. Fonseca MI Ager RR Chu SH Yazan O Sanderson SD LaFerla FM et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer‘s disease. J Immunol 2009 ; 183 : 1375–1383. [CrossRef] [PubMed] [Google Scholar]
  19. Nicolas CS Amici M Bortolotto ZA Doherty A Csaba Z Fafouri A et al. The role of JAK-STAT signaling within the CNS. Jak-Stat 2013 ; 2 : e22925. [CrossRef] [PubMed] [Google Scholar]
  20. Yin L, Dai Q, Jiang P, Zhu L, Dai H, Yao Z, et al. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. NeuroToxicology 2017. [Google Scholar]
  21. Bai B Horlad H Saito Y Ohnishi K Fujiwara Y Takeya M et al. Role of Stat3 activation in cell-cell interaction between B-cell lymphoma and macrophages: the in vitro study. J Clin Exp Hematop 2013 ; 53 : 127–133. [CrossRef] [PubMed] [Google Scholar]
  22. Lee WK Lee SY Choi JE Seok Y Lee EB Lee HC et al. Development of a prognosis-prediction model incorporating genetic polymorphism with pathologic stage in stage I non-small cell lung cancer: A multicenter study. Thorac Cancer 2017 ; 8 : 251–259. [CrossRef] [PubMed] [Google Scholar]
  23. Cribbs DH Berchtold NC Perreau V Coleman PD Rogers J Tenner AJ et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012 ; 9 : 179. [PubMed] [Google Scholar]
  24. Wyss-Coray T Rogers J Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012 ; 2 : a006346. [Google Scholar]
  25. Zhou J Fonseca MI Pisalyaput K Tenner AJ Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 2008 ; 106 : 2080–2092. [CrossRef] [PubMed] [Google Scholar]
  26. Farkas I Takahashi M Fukuda A Yamamoto N Akatsu H Baranyi L et al. Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease. J Immunol 2003 ; 170 : 5764–5771. [CrossRef] [PubMed] [Google Scholar]
  27. McGeer EG McGeer PL Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 2010 ; 19 : 355–361. [CrossRef] [PubMed] [Google Scholar]
  28. Brandenburg LO Konrad M Wruck CJ Koch T Lucius R Pufe T Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1–42-induced signal transduction in glial cells. J Neurochem 2010 ; 113 : 749–760. [CrossRef] [PubMed] [Google Scholar]
  29. Ries M Sastre M Mechanisms of Abeta Clearance and Degradation by Glial Cells. Front Aging Neurosci 2016 ; 8 : 160. [PubMed] [Google Scholar]
  30. Stevens B Allen NJ Vazquez LE Howell GR Christopherson KS Nouri N et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007 ; 131 : 1164–1178. [CrossRef] [PubMed] [Google Scholar]
  31. Schafer DP Lehrman EK Kautzman AG Koyama R Mardinly AR Yamasaki R et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012 ; 74 : 691–705. [CrossRef] [PubMed] [Google Scholar]
  32. Wan J Fu AK Ip FC Ng H-K Hugon J Page G et al. Tyk2/STAT3 signaling mediates β-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. Journal of neuroscience 2010 ; 30 : 6873–6881. [CrossRef] [Google Scholar]
  33. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 2015; 35: 2817–29. [CrossRef] [PubMed] [Google Scholar]
  34. Huang C Ma R Sun S Wei G Fang Y Liu R et al. JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol 2008 ; 204 : 118–125. [CrossRef] [PubMed] [Google Scholar]
  35. Xiong J Wang C Chen H Hu Y Tian L Pan J et al. Abeta-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci 2014 ; 124 : 609–620. [CrossRef] [Google Scholar]
  36. Zhang Y Li S He H Han Q Wang B Zhu Y Influence of Tanshinone IIA on apoptosis of human esophageal carcinoma Eca-109 cells and its molecular mechanism. Thorac Cancer 2017 ; 8 : 296–303. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.