Free Access
Issue
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 74 - 80
DOI https://doi.org/10.1051/medsci/201834f113
Published online 07 November 2018
  1. Marconcini R Spagnolo F Stucci LS et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018 ; 9 : 12452–12470. [PubMed] [Google Scholar]
  2. Yang J Manson DK Marr BP Carvajal RD Treatment of uveal melanoma: where are we now?. Ther Adv Med Oncol 2018 ; 10 : 1758834018757175. [PubMed] [Google Scholar]
  3. El-Kenawy AEM, Constantin C, Hassan SMA, et al. Nanomedicine in Melanoma: Current Trends and Future Perspectives. In: Ward WH, Farma JM, eds. Cutaneous Melanoma: Etiology and Therapy. Brisbane (AU)2017. [Google Scholar]
  4. Matthews NH, Li WQ, Qureshi AA, et al. Epidemiology of Melanoma. In: Ward WH, Farma JM, eds. Cutaneous Melanoma: Etiology and Therapy. Brisbane (AU)2017. [Google Scholar]
  5. Jia D, Park JH, Jung KH, et al. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells 2018; 7. [Google Scholar]
  6. Min HY Lee HY Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018 ; 26 : 45–56. [CrossRef] [PubMed] [Google Scholar]
  7. Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Front Immunol 2018; 9 : 353. [CrossRef] [PubMed] [Google Scholar]
  8. Choi YK Park KG Targeting Glutamine Metabolism for Cancer Treatment. Biomol Ther (Seoul) 2018 ; 26 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  9. Luengo A Gui DY Vander Heiden MG Targeting Metabolism for Cancer Therapy. Cell Chem Biol 2017 ; 24 : 1161–1180. [CrossRef] [PubMed] [Google Scholar]
  10. Morris CR Hamilton-Reeves J Martindale RG et al. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017 ; 32 : 30S–47S. [CrossRef] [PubMed] [Google Scholar]
  11. Patil MD Bhaumik J Babykutty S et al. Arginine dependence of tumor cells: targeting a chink in cancer‘s armor. Oncogene 2016 ; 35 : 4957–4972. [CrossRef] [Google Scholar]
  12. Han RZ Xu GC Dong JJ Ni Y Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol 2016 ; 100 : 4747–4760. [CrossRef] [PubMed] [Google Scholar]
  13. Xiong L Teng JL Botelho MG et al. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy. Int J Mol Sci 2016 ; 17 : 363. [CrossRef] [Google Scholar]
  14. Qiu F Huang J Sui M Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015 ; 364 : 1–7. [CrossRef] [Google Scholar]
  15. Ersoy Tunali N, Marobbio CM, Tiryakioglu NO, et al. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 2014; 112 : 25–9. [CrossRef] [Google Scholar]
  16. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2013 ; 34 : 465–484. [CrossRef] [PubMed] [Google Scholar]
  17. Palmieri F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 2014 ; 37 : 565–575. [CrossRef] [PubMed] [Google Scholar]
  18. Marobbio CM Punzi G Pierri CL et al. Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 2015 ; 115 : 27–32. [CrossRef] [Google Scholar]
  19. Salvi S Dionisi-Vici C Bertini E et al. Seven novel mutations in the ORNT1 gene (SLC25A15) in patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Hum Mutat 2001 ; 18 : 460. [Google Scholar]
  20. Tang Z Li C Kang B et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017 ; 45 : W98–W102. [CrossRef] [PubMed] [Google Scholar]
  21. Ren S Liu S Howell P, Jr et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control 2008 ; 15 : 202–215. [CrossRef] [PubMed] [Google Scholar]
  22. Talantov D Mazumder A Yu JX et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005 ; 11 : 7234–7242. [CrossRef] [PubMed] [Google Scholar]
  23. Wu G. Functional amino acids in growth, reproduction, and health. Adv Nutr 2010 ; 1 : 31–37. [CrossRef] [PubMed] [Google Scholar]
  24. Cantor JR Sabatini DM Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012 ; 2 : 881–898. [CrossRef] [PubMed] [Google Scholar]
  25. Ferreira LM Hebrant A Dumont JE Metabolic reprogramming of the tumor. Oncogene 2012 ; 31 : 3999–4011. [CrossRef] [Google Scholar]
  26. Dillon BJ Prieto VG Curley SA et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 2004 ; 100 : 826–833. [CrossRef] [PubMed] [Google Scholar]
  27. Savaraj N Wu C Li YY et al. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2015 ; 6 : 6295–6309. [PubMed] [Google Scholar]
  28. Long Y Tsai WB Wangpaichitr M et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther 2013 ; 12 : 2581–2590. [CrossRef] [Google Scholar]
  29. Feun LG Marini A Walker G et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer 2012 ; 106 : 1481–1485. [CrossRef] [PubMed] [Google Scholar]
  30. Karunakaran S Ramachandran S Coothankandaswamy V et al. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem 2011 ; 286 : 31830–31838. [CrossRef] [PubMed] [Google Scholar]
  31. Kim RH Coates JM Bowles TL et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 2009 ; 69 : 700–708. [CrossRef] [Google Scholar]
  32. Wangpaichitr M Wu C Bigford G et al. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma. Anticancer Res 2014 ; 34 : 6991–6999. [PubMed] [Google Scholar]
  33. Savaraj N You M Wu C et al. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med 2010 ; 10 : 405–412. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.