Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
|
|
---|---|---|
Page(s) | 74 - 80 | |
DOI | https://doi.org/10.1051/medsci/201834f113 | |
Publié en ligne | 7 novembre 2018 |
- Marconcini R Spagnolo F Stucci LS et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018 ; 9 : 12452–12470. [PubMed] [Google Scholar]
- Yang J Manson DK Marr BP Carvajal RD Treatment of uveal melanoma: where are we now?. Ther Adv Med Oncol 2018 ; 10 : 1758834018757175. [PubMed] [Google Scholar]
- El-Kenawy AEM, Constantin C, Hassan SMA, et al. Nanomedicine in Melanoma: Current Trends and Future Perspectives. In: Ward WH, Farma JM, eds. Cutaneous Melanoma: Etiology and Therapy. Brisbane (AU)2017. [Google Scholar]
- Matthews NH, Li WQ, Qureshi AA, et al. Epidemiology of Melanoma. In: Ward WH, Farma JM, eds. Cutaneous Melanoma: Etiology and Therapy. Brisbane (AU)2017. [Google Scholar]
- Jia D, Park JH, Jung KH, et al. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells 2018; 7. [Google Scholar]
- Min HY Lee HY Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018 ; 26 : 45–56. [CrossRef] [PubMed] [Google Scholar]
- Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Front Immunol 2018; 9 : 353. [CrossRef] [PubMed] [Google Scholar]
- Choi YK Park KG Targeting Glutamine Metabolism for Cancer Treatment. Biomol Ther (Seoul) 2018 ; 26 : 19–28. [CrossRef] [PubMed] [Google Scholar]
- Luengo A Gui DY Vander Heiden MG Targeting Metabolism for Cancer Therapy. Cell Chem Biol 2017 ; 24 : 1161–1180. [CrossRef] [PubMed] [Google Scholar]
- Morris CR Hamilton-Reeves J Martindale RG et al. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017 ; 32 : 30S–47S. [CrossRef] [PubMed] [Google Scholar]
- Patil MD Bhaumik J Babykutty S et al. Arginine dependence of tumor cells: targeting a chink in cancer‘s armor. Oncogene 2016 ; 35 : 4957–4972. [CrossRef] [Google Scholar]
- Han RZ Xu GC Dong JJ Ni Y Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol 2016 ; 100 : 4747–4760. [CrossRef] [PubMed] [Google Scholar]
- Xiong L Teng JL Botelho MG et al. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy. Int J Mol Sci 2016 ; 17 : 363. [CrossRef] [Google Scholar]
- Qiu F Huang J Sui M Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015 ; 364 : 1–7. [CrossRef] [Google Scholar]
- Ersoy Tunali N, Marobbio CM, Tiryakioglu NO, et al. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 2014; 112 : 25–9. [CrossRef] [Google Scholar]
- Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2013 ; 34 : 465–484. [CrossRef] [PubMed] [Google Scholar]
- Palmieri F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 2014 ; 37 : 565–575. [CrossRef] [PubMed] [Google Scholar]
- Marobbio CM Punzi G Pierri CL et al. Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 2015 ; 115 : 27–32. [CrossRef] [Google Scholar]
- Salvi S Dionisi-Vici C Bertini E et al. Seven novel mutations in the ORNT1 gene (SLC25A15) in patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Hum Mutat 2001 ; 18 : 460. [Google Scholar]
- Tang Z Li C Kang B et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017 ; 45 : W98–W102. [CrossRef] [PubMed] [Google Scholar]
- Ren S Liu S Howell P, Jr et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control 2008 ; 15 : 202–215. [CrossRef] [PubMed] [Google Scholar]
- Talantov D Mazumder A Yu JX et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005 ; 11 : 7234–7242. [CrossRef] [PubMed] [Google Scholar]
- Wu G. Functional amino acids in growth, reproduction, and health. Adv Nutr 2010 ; 1 : 31–37. [CrossRef] [PubMed] [Google Scholar]
- Cantor JR Sabatini DM Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012 ; 2 : 881–898. [CrossRef] [PubMed] [Google Scholar]
- Ferreira LM Hebrant A Dumont JE Metabolic reprogramming of the tumor. Oncogene 2012 ; 31 : 3999–4011. [CrossRef] [Google Scholar]
- Dillon BJ Prieto VG Curley SA et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 2004 ; 100 : 826–833. [CrossRef] [PubMed] [Google Scholar]
- Savaraj N Wu C Li YY et al. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2015 ; 6 : 6295–6309. [PubMed] [Google Scholar]
- Long Y Tsai WB Wangpaichitr M et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther 2013 ; 12 : 2581–2590. [CrossRef] [Google Scholar]
- Feun LG Marini A Walker G et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer 2012 ; 106 : 1481–1485. [CrossRef] [PubMed] [Google Scholar]
- Karunakaran S Ramachandran S Coothankandaswamy V et al. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem 2011 ; 286 : 31830–31838. [CrossRef] [PubMed] [Google Scholar]
- Kim RH Coates JM Bowles TL et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 2009 ; 69 : 700–708. [CrossRef] [Google Scholar]
- Wangpaichitr M Wu C Bigford G et al. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma. Anticancer Res 2014 ; 34 : 6991–6999. [PubMed] [Google Scholar]
- Savaraj N You M Wu C et al. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med 2010 ; 10 : 405–412. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.