Free Access
Issue
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 8 - 14
DOI https://doi.org/10.1051/medsci/201834f102
Published online 07 November 2018
  1. MacKie RM, Hauschild A, Eggermont AM. Epidemiology of invasive cutaneous melanoma. Ann Oncol 2009; 20 Suppl 6 : vi1–7. [CrossRef] [PubMed] [Google Scholar]
  2. Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014 ; 28 : 1005–1011. [PubMed] [Google Scholar]
  3. Gloster HM, Jr., Neal K. Skin cancer in skin of color. J Am Acad Dermatol 2006; 55 : 741–60; quiz 61–4. [CrossRef] [PubMed] [Google Scholar]
  4. Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol 2010 ; 49 : 978–986. [CrossRef] [PubMed] [Google Scholar]
  5. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012 ; 366 : 707–714. [CrossRef] [PubMed] [Google Scholar]
  6. Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol 2011 ; 82 : 201–209. [CrossRef] [PubMed] [Google Scholar]
  7. Mollereau C, Parmentier M, Mailleux P, et al. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 1994 ; 341 : 33–38. [CrossRef] [PubMed] [Google Scholar]
  8. Shinkai H, Ito T, Iida T, et al. 4-Aminoquinolines: novel nociceptin antagonists with analgesic activity. J Med Chem 2000 ; 43 : 4667–4677. [CrossRef] [PubMed] [Google Scholar]
  9. Yamada H, Nakamoto H, Suzuki Y, et al. Pharmacological profiles of a novel opioid receptor-like1 (ORL(1)) receptor antagonist, JTC-801. Br J Pharmacol 2002 ; 135 : 323–332. [CrossRef] [PubMed] [Google Scholar]
  10. Tamai H, Sawamura S, Takeda K, et al. Anti-allodynic and anti-hyperalgesic effects of nociceptin receptor antagonist, JTC-801, in rats after spinal nerve injury and inflammation. Eur J Pharmacol 2005 ; 510 : 223–228. [CrossRef] [PubMed] [Google Scholar]
  11. Zhang Y, Simpson-Durand CD, Standifer KM. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharmacol 2015 ; 172 : 571–582. [CrossRef] [PubMed] [Google Scholar]
  12. Boehncke S, Hardt K, Schadendorf D, et al. Endogenous mu-opioid peptides modulate immune response towards malignant melanoma. Exp Dermatol 2011 ; 20 : 24–28. [CrossRef] [PubMed] [Google Scholar]
  13. Yamamizu K, Furuta S, Hamada Y, et al. small ka, Cyrillic Opioids inhibit tumor angiogenesis by suppressing VEGF signaling. Sci Rep 2013 ; 3 : 3213. [CrossRef] [PubMed] [Google Scholar]
  14. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008 ; 27 : 5497–5510. [CrossRef] [Google Scholar]
  15. Karbowniczek M, Spittle CS, Morrison T, et al. mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 2008 ; 128 : 980–987. [CrossRef] [PubMed] [Google Scholar]
  16. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 2012 ; 441 : 1–21. [CrossRef] [PubMed] [Google Scholar]
  17. Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 2015 ; 359 : 20–35. [CrossRef] [Google Scholar]
  18. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002 ; 417 : 949–954. [CrossRef] [PubMed] [Google Scholar]
  19. Lito P, Pratilas CA, Joseph EW, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012 ; 22 : 668–682. [CrossRef] [PubMed] [Google Scholar]
  20. Butour JL, Moisand C, Mazarguil H, et al. Recognition and activation of the opioid receptor-like ORL 1 receptor by nociceptin, nociceptin analogs and opioids. Eur J Pharmacol 1997 ; 321 : 97–103. [CrossRef] [PubMed] [Google Scholar]
  21. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996 ; 87 : 171. [CrossRef] [PubMed] [Google Scholar]
  22. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997 ; 275 : 1129–1132. [CrossRef] [Google Scholar]
  23. Fridman JS, Benedict MA, Maybaum J. bcl-X(S)-induced cell death in 3T3 cells does not require or induce caspase activation. Cancer Res 1999 ; 59 : 5999–6004. [Google Scholar]
  24. Gustin JP, Karakas B, Weiss MB, et al. Knockin of mutant PIK3CA activates multiple oncogenic pathways. Proc Natl Acad Sci U S A 2009 ; 106 : 2835–2840. [CrossRef] [PubMed] [Google Scholar]
  25. Kwong LN, Davies MA. Navigating the therapeutic complexity of PI3K pathway inhibition in melanoma. Clin Cancer Res 2013 ; 19 : 5310–5319. [CrossRef] [PubMed] [Google Scholar]
  26. Atefi M, von Euw E, Attar N, et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One 2011 ; 6 : e28973. [CrossRef] [PubMed] [Google Scholar]
  27. Gopal YN, Deng W, Woodman SE, et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010 ; 70 : 8736–8747. [CrossRef] [Google Scholar]
  28. Grove JR, Banerjee P, Balasubramanyam A, et al. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 1991 ; 11 : 5541–5550. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.