Open Access
Med Sci (Paris)
Volume 34, Number 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 701 - 708
Section M/S Revues
Published online 19 September 2018
  1. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [Google Scholar]
  2. Hanahan D, Weinberg R. The hallmarks of cancer. Cell 2000 ; 100: 57–70. [CrossRef] [PubMed] [Google Scholar]
  3. Hanahan D, Weinberg R. Hallmarks of cancer: The next generation. Cell 2011 : 144: 646–674. [CrossRef] [PubMed] [Google Scholar]
  4. Koppenol WH, Bounds P, Dang CV. Otto Warburg’s contribution to current concepts of cancer metabolism. Nat Rev Cancer 2011 ; 11: 325–337. [Google Scholar]
  5. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. De la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Pavlova N, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016 ; 23: 27–47. [CrossRef] [PubMed] [Google Scholar]
  7. Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: new concepts in old field. Antioxid Redox Signal 2017 ; 26: 462–485. [CrossRef] [PubMed] [Google Scholar]
  8. Brahimi-Horn MC, Pouysségur J. HIF at a glance. J Cell Sci 2009 ; 122: 1055–1057. [Google Scholar]
  9. Chandel NS, Budinger SGR, Schumacker PT. Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem 1996 ; 271: 18672–18677. [CrossRef] [PubMed] [Google Scholar]
  10. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001 ; 292: 504–507. [Google Scholar]
  11. Shim H, Dolde C, Lewis BC, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997 ;94 : 6658–6663. [CrossRef] [Google Scholar]
  12. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008 ;105 : 18782–18787. [CrossRef] [Google Scholar]
  13. Lacroix M, Linares LK, Le Cam L. Rôle du suppresseur de tumeurs p53 dans le contrôle du métabolisme. Med Sci (Paris) 2013 ;29 : 1125–1130. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Balkwill FR, Capasso M, Hagemann T. The tumour microenvironment at a glance. J Cell Sci 2012 ;125 : 5591–5596. [Google Scholar]
  15. Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010 ;17 : 135–147. [CrossRef] [PubMed] [Google Scholar]
  16. Lyssiotis CA and Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017 ;27 : 863–875. [Google Scholar]
  17. Abdel-Haleem AM, Lewis NE, Jamshidi N, et al. The emerging facets of the non-cancerous Warburg effect. Front Endocrinol 2017 ; 8: 279. [CrossRef] [Google Scholar]
  18. Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-coA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015, 21: 392–402. [CrossRef] [PubMed] [Google Scholar]
  19. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 2004 ;313 : 459–465. [Google Scholar]
  20. Foretz M, Viollet B. Les nouvelles promesses de la metformine : vers une meilleure compréhension de ses mécanismes d’action. Med/Sci (Paris) 2014 ; 30 : 82–92. [CrossRef] [Google Scholar]
  21. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005 ;105 : 1851–1861. [Google Scholar]
  22. Vasquez F, Lim JH, Chim H, et al. PGC1alpha expression defines a subset of human melanoma tumours with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013 ;28 : 287–301. [Google Scholar]
  23. Frattini V, Pagnotta SM, Tala N, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 2018 ;553 : 222–227. [CrossRef] [PubMed] [Google Scholar]
  24. Marin-Valencia I, Yang C, Mashimo T, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012 ;15 : 827–837. [CrossRef] [PubMed] [Google Scholar]
  25. Hensley CT, Faubert B, Yuan Q, et al. Metabolic heterogeneity in human lung tumors. Cell 2016 ;164 : 681–694. [CrossRef] [PubMed] [Google Scholar]
  26. Rossignol R, Gilkerson R, Aggeler R, et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 2004 ;64 : 985–993. [Google Scholar]
  27. Altman BJ, Stine ZE, Dang CV. From Krebs cycle to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 2016 ;16 : 619–34. [Google Scholar]
  28. Senni N, Savall M, Cabrerizo G, et al. β-catenin-activated hepatocellular carcinoma are addicted to fatty acids. Gut 2018 ; doi: 10.1136/gutjnl-2017-315448. [Google Scholar]
  29. Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012 ;15 : 157–170. [CrossRef] [PubMed] [Google Scholar]
  30. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab 2018 ;27 : 757–785. [CrossRef] [PubMed] [Google Scholar]
  31. Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor reccurence, and restricted patient survival in human cervical cancers. Cancer Res 2000 ;60 : 916–921. [Google Scholar]
  32. Wulaningsih W, Holmberg L, Garmo H, et al. Serum lactate dehydrogenase and survival following cancer diagnosis. Br J Cancer 2015 ;113 : 1389–1396. [CrossRef] [PubMed] [Google Scholar]
  33. Corbet C, Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat Rev Cancer 2017 ; 17: 577–593. [Google Scholar]
  34. Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumour cell-derived lactic acid on human T cells. Blood 2007 ;109 : 3812–9. [Google Scholar]
  35. Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008 ;118 : 3930–3942. [PubMed] [Google Scholar]
  36. Kennedy KM, Scarbrough PM, Ribeiro A, et al. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. Plos One 2013 ; 8: e751543. [Google Scholar]
  37. Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017 ;551 : 115–119. [CrossRef] [PubMed] [Google Scholar]
  38. Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors. Cell 2017 ;171 : 358–371. [CrossRef] [PubMed] [Google Scholar]
  39. Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017 ;25 : 1231–1242. [CrossRef] [PubMed] [Google Scholar]
  40. Kirschner M, Gerhart J. Evolvability. Proc Natl Acad Sci USA 1998 ;95 : 8420–8427. [CrossRef] [Google Scholar]
  41. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest 2013 ;123 : 3652–3658. [CrossRef] [PubMed] [Google Scholar]
  42. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017 ;1 : 11–31. [Google Scholar]
  43. Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 2016 ;24 : 657–671. [CrossRef] [PubMed] [Google Scholar]
  44. Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015 ;162 : 1229–141. [CrossRef] [PubMed] [Google Scholar]
  45. Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015 ;162 : 1218–1228. [Google Scholar]
  46. Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009 ;8 : 3984–4001. [CrossRef] [PubMed] [Google Scholar]
  47. Billaud M, Henry J, Sujobert P. Trompeuses métaphores du cancer. Le Monde Diplomatique 2016 ; 750: 28. [Google Scholar]
  48. Liu Y, Bell T, Zhang H, et al. Targeting OXPHOS pathway against Ibrutinib resistance to mantle cell lymphoma. Blood 2016 ; 128: 290. [Google Scholar]
  49. Haq R, Fisher D, Widlund HR. Molecular pathways: BRAF induces bioenergetics adaptation by attenuating oxidative phosphorylation. Clin Cancer Res 2014 ;20 : 2257–2263. [CrossRef] [PubMed] [Google Scholar]
  50. Farge T, Saland E, de Toni F, et al. Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 2017 ;7 : 716–735. [CrossRef] [PubMed] [Google Scholar]
  51. Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Med 2017 ;23 : 1234–1240. [CrossRef] [Google Scholar]
  52. Lee KM, Giltnane JM, Balko JM, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 2017 ;26 : 633–647. [CrossRef] [PubMed] [Google Scholar]
  53. Bosc C, Selak MA, Sarry JE. Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 2017 ;26 : 705–707. [CrossRef] [PubMed] [Google Scholar]
  54. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010 ;141 : 69–80. [CrossRef] [PubMed] [Google Scholar]
  55. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009 ;324 : 1029–33. [Google Scholar]
  56. Teillaud JL (coordination). Microenvironnements tumoraux : conflictuels et complémentaires. Med Sci (Paris) 2014 ;30 : 339–470. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.