Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 8-9, Août–Septembre 2018
Les Cahiers de Myologie
Page(s) 701 - 708
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183408017
Publié en ligne 19 septembre 2018
  1. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [Google Scholar]
  2. Hanahan D, Weinberg R. The hallmarks of cancer. Cell 2000 ; 100: 57–70. [CrossRef] [PubMed] [Google Scholar]
  3. Hanahan D, Weinberg R. Hallmarks of cancer: The next generation. Cell 2011 : 144: 646–674. [CrossRef] [PubMed] [Google Scholar]
  4. Koppenol WH, Bounds P, Dang CV. Otto Warburg’s contribution to current concepts of cancer metabolism. Nat Rev Cancer 2011 ; 11: 325–337. [Google Scholar]
  5. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg. De la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Pavlova N, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016 ; 23: 27–47. [CrossRef] [PubMed] [Google Scholar]
  7. Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: new concepts in old field. Antioxid Redox Signal 2017 ; 26: 462–485. [CrossRef] [PubMed] [Google Scholar]
  8. Brahimi-Horn MC, Pouysségur J. HIF at a glance. J Cell Sci 2009 ; 122: 1055–1057. [Google Scholar]
  9. Chandel NS, Budinger SGR, Schumacker PT. Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem 1996 ; 271: 18672–18677. [CrossRef] [PubMed] [Google Scholar]
  10. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001 ; 292: 504–507. [Google Scholar]
  11. Shim H, Dolde C, Lewis BC, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997 ;94 : 6658–6663. [CrossRef] [Google Scholar]
  12. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008 ;105 : 18782–18787. [CrossRef] [Google Scholar]
  13. Lacroix M, Linares LK, Le Cam L. Rôle du suppresseur de tumeurs p53 dans le contrôle du métabolisme. Med Sci (Paris) 2013 ;29 : 1125–1130. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Balkwill FR, Capasso M, Hagemann T. The tumour microenvironment at a glance. J Cell Sci 2012 ;125 : 5591–5596. [Google Scholar]
  15. Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010 ;17 : 135–147. [CrossRef] [PubMed] [Google Scholar]
  16. Lyssiotis CA and Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017 ;27 : 863–875. [Google Scholar]
  17. Abdel-Haleem AM, Lewis NE, Jamshidi N, et al. The emerging facets of the non-cancerous Warburg effect. Front Endocrinol 2017 ; 8: 279. [CrossRef] [Google Scholar]
  18. Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-coA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015, 21: 392–402. [CrossRef] [PubMed] [Google Scholar]
  19. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 2004 ;313 : 459–465. [Google Scholar]
  20. Foretz M, Viollet B. Les nouvelles promesses de la metformine : vers une meilleure compréhension de ses mécanismes d’action. Med/Sci (Paris) 2014 ; 30 : 82–92. [CrossRef] [Google Scholar]
  21. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005 ;105 : 1851–1861. [Google Scholar]
  22. Vasquez F, Lim JH, Chim H, et al. PGC1alpha expression defines a subset of human melanoma tumours with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013 ;28 : 287–301. [Google Scholar]
  23. Frattini V, Pagnotta SM, Tala N, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 2018 ;553 : 222–227. [CrossRef] [PubMed] [Google Scholar]
  24. Marin-Valencia I, Yang C, Mashimo T, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012 ;15 : 827–837. [CrossRef] [PubMed] [Google Scholar]
  25. Hensley CT, Faubert B, Yuan Q, et al. Metabolic heterogeneity in human lung tumors. Cell 2016 ;164 : 681–694. [CrossRef] [PubMed] [Google Scholar]
  26. Rossignol R, Gilkerson R, Aggeler R, et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 2004 ;64 : 985–993. [Google Scholar]
  27. Altman BJ, Stine ZE, Dang CV. From Krebs cycle to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 2016 ;16 : 619–34. [Google Scholar]
  28. Senni N, Savall M, Cabrerizo G, et al. β-catenin-activated hepatocellular carcinoma are addicted to fatty acids. Gut 2018 ; doi: 10.1136/gutjnl-2017-315448. [Google Scholar]
  29. Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012 ;15 : 157–170. [CrossRef] [PubMed] [Google Scholar]
  30. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab 2018 ;27 : 757–785. [CrossRef] [PubMed] [Google Scholar]
  31. Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor reccurence, and restricted patient survival in human cervical cancers. Cancer Res 2000 ;60 : 916–921. [Google Scholar]
  32. Wulaningsih W, Holmberg L, Garmo H, et al. Serum lactate dehydrogenase and survival following cancer diagnosis. Br J Cancer 2015 ;113 : 1389–1396. [CrossRef] [PubMed] [Google Scholar]
  33. Corbet C, Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat Rev Cancer 2017 ; 17: 577–593. [Google Scholar]
  34. Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumour cell-derived lactic acid on human T cells. Blood 2007 ;109 : 3812–9. [Google Scholar]
  35. Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008 ;118 : 3930–3942. [PubMed] [Google Scholar]
  36. Kennedy KM, Scarbrough PM, Ribeiro A, et al. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. Plos One 2013 ; 8: e751543. [Google Scholar]
  37. Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017 ;551 : 115–119. [CrossRef] [PubMed] [Google Scholar]
  38. Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors. Cell 2017 ;171 : 358–371. [CrossRef] [PubMed] [Google Scholar]
  39. Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab 2017 ;25 : 1231–1242. [CrossRef] [PubMed] [Google Scholar]
  40. Kirschner M, Gerhart J. Evolvability. Proc Natl Acad Sci USA 1998 ;95 : 8420–8427. [CrossRef] [Google Scholar]
  41. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest 2013 ;123 : 3652–3658. [CrossRef] [PubMed] [Google Scholar]
  42. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017 ;1 : 11–31. [Google Scholar]
  43. Brand A, Singer K, Koehl GE, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 2016 ;24 : 657–671. [CrossRef] [PubMed] [Google Scholar]
  44. Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015 ;162 : 1229–141. [CrossRef] [PubMed] [Google Scholar]
  45. Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015 ;162 : 1218–1228. [Google Scholar]
  46. Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009 ;8 : 3984–4001. [CrossRef] [PubMed] [Google Scholar]
  47. Billaud M, Henry J, Sujobert P. Trompeuses métaphores du cancer. Le Monde Diplomatique 2016 ; 750: 28. [Google Scholar]
  48. Liu Y, Bell T, Zhang H, et al. Targeting OXPHOS pathway against Ibrutinib resistance to mantle cell lymphoma. Blood 2016 ; 128: 290. [Google Scholar]
  49. Haq R, Fisher D, Widlund HR. Molecular pathways: BRAF induces bioenergetics adaptation by attenuating oxidative phosphorylation. Clin Cancer Res 2014 ;20 : 2257–2263. [CrossRef] [PubMed] [Google Scholar]
  50. Farge T, Saland E, de Toni F, et al. Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 2017 ;7 : 716–735. [CrossRef] [PubMed] [Google Scholar]
  51. Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Med 2017 ;23 : 1234–1240. [CrossRef] [Google Scholar]
  52. Lee KM, Giltnane JM, Balko JM, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 2017 ;26 : 633–647. [CrossRef] [PubMed] [Google Scholar]
  53. Bosc C, Selak MA, Sarry JE. Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 2017 ;26 : 705–707. [CrossRef] [PubMed] [Google Scholar]
  54. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010 ;141 : 69–80. [CrossRef] [PubMed] [Google Scholar]
  55. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009 ;324 : 1029–33. [Google Scholar]
  56. Teillaud JL (coordination). Microenvironnements tumoraux : conflictuels et complémentaires. Med Sci (Paris) 2014 ;30 : 339–470. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.