Modèles alternatifs
Free Access
Med Sci (Paris)
Volume 34, Number 6-7, Juin–Juillet 2018
Modèles alternatifs
Page(s) 571 - 579
Section M/S Revues
Published online 31 July 2018
  1. Lopez-Otin C, Blasco MA, Partridge L. et al. The hallmarks of aging. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  2. Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics 2017 ; 18 : 385–407. [CrossRef] [PubMed] [Google Scholar]
  3. Dyer CA, Sinclair AJ. The premature ageing syndromes: insights into the ageing process. Age Ageing 1998 ; 27 : 73–80. [CrossRef] [PubMed] [Google Scholar]
  4. Blackburn EH. Telomeres and telomerase. Keio J Med 2000 ; 49 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  5. Moreira OC, Estebanez B, Martinez-Florez S. et al. Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxid Med Cell Longev 2017 ; 2017 : 2012798. [CrossRef] [PubMed] [Google Scholar]
  6. Vigie P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Kubben N, Zhang W, Wang L. et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 2016 ; 165 : 1361–1374. [CrossRef] [PubMed] [Google Scholar]
  8. Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 2011 ; 22 : 482–487. [CrossRef] [PubMed] [Google Scholar]
  9. Frimat M, Daroux M, Litke R. et al. Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017 ; 131 : 1069–1092. [CrossRef] [PubMed] [Google Scholar]
  10. Jaisson S, Desmons A, Gorisse L, Gillery P. Vieillissement moléculaire des protéines : quel rôle en physiopathologie ?. Med Sci (Paris) 2017 ; 33 : 176–182. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Fulop T, Dupuis G, Witkowski JM, Larbi A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev Invest Clin 2016 ; 68 : 84–91. [PubMed] [Google Scholar]
  12. Galas S, Chateau MT, Pomies P. et al. Aperçu de la diversité des modèles animaux dédiés à l’étude du vieillissement. Med Sci (Paris) 2012 ; 28 : 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977 ; 6 : 413–429. [CrossRef] [PubMed] [Google Scholar]
  14. Anderson JL, Morran LT, Phillips PC. Outcrossing and the maintenance of males within C. elegans populations. J Hered 2010 ; 101 : suppl 1S62–S74. [Google Scholar]
  15. Timmons L, Luna H, Martinez J. et al. Systematic comparison of bacterial feeding strains for increased yield of Caenorhabditis elegans males by RNA interference-induced non-disjunction. FEBS Lett 2014 ; 588 : 3347–3351. [CrossRef] [PubMed] [Google Scholar]
  16. Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011 ; 6 : e20085. [CrossRef] [PubMed] [Google Scholar]
  17. Collins JJ, Huang C, Hughes S, Kornfeld K. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook 2008 ; 1–21. [Google Scholar]
  18. Mobbs CV, Hof PR. Body composition and aging. Basel : Karger, 2010 ; 37 : I–VI. [CrossRef] [Google Scholar]
  19. Brenner S. The genetics of behaviour. Br Med Bull 1973 ; 29 : 269–271. [CrossRef] [PubMed] [Google Scholar]
  20. Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983 ; 22 : 279–286. [CrossRef] [PubMed] [Google Scholar]
  21. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988 ; 118 : 75–86. [PubMed] [Google Scholar]
  22. Kenyon C, Chang J, Gensch E. et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  23. Riddle DL, Albert PS. Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C elegans II. New York : Cold Spring Harbor, 1997. [Google Scholar]
  24. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997 ; 277 : 942–946. [Google Scholar]
  25. Van Heemst D. Insulin, IGF-1 and longevity. Aging Dis 2010 ; 1 : 147–157. [PubMed] [Google Scholar]
  26. Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009 ; 8 : 113–127. [CrossRef] [PubMed] [Google Scholar]
  27. Jordan B. Gènes et longévité : nouvelles données, nouvelles controverses. Med Sci (Paris) 2018 ; 34 : 485–487. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Willcox BJ, Donlon TA, He Q. et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008 ; 105 : 13987–13992. [CrossRef] [Google Scholar]
  29. Panowski SH, Wolff S, Aguilaniu H. et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007 ; 447 : 550–555. [CrossRef] [PubMed] [Google Scholar]
  30. Chaudhuri J, Bose N, Gong J. et al. A Caenorhabditis elegans model elucidates a conserved role for TRPA1-Nrf signaling in reactive alpha-dicarbonyl detoxification. Curr Biol 2016 ; 26 : 3014–3025. [CrossRef] [PubMed] [Google Scholar]
  31. Dingley S, Polyak E, Lightfoot R. et al. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion 2010 ; 10 : 125–136. [CrossRef] [PubMed] [Google Scholar]
  32. Mendler M, Schlotterer A, Ibrahim Y. et al. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015 ; 58 : 393–401. [CrossRef] [PubMed] [Google Scholar]
  33. Xu J, Guo Y, Sui T. et al. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 2017 ; 51 : 529–544. [Google Scholar]
  34. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001 ; 1 : 633–644. [CrossRef] [PubMed] [Google Scholar]
  35. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013 ; 153 : 1435–1447. [CrossRef] [PubMed] [Google Scholar]
  36. Walther DM, Kasturi P, Zheng M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 2015 ; 161 : 919–932. [CrossRef] [PubMed] [Google Scholar]
  37. McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta 2014 ; 1839 : 1454–1462. [CrossRef] [PubMed] [Google Scholar]
  38. Greer EL, Maures TJ, Hauswirth AG. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010 ; 466 : 383–387. [CrossRef] [PubMed] [Google Scholar]
  39. Jin C, Li J, Green CD. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011 ; 14 : 161–172. [CrossRef] [PubMed] [Google Scholar]
  40. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 2011 ; 7 : e1002306. [CrossRef] [PubMed] [Google Scholar]
  41. Nehammer C, Podolska A, Mackowiak SD. et al. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans. Sci Rep 2015 ; 5 : 8866. [CrossRef] [PubMed] [Google Scholar]
  42. Smith-Vikos T, Liu Z, Parsons C. et al. A serum miRNA profile of human longevity: findings from the Baltimore longitudinal study of aging (BLSA). Aging (Albany NY) 2016 ; 8 : 2971–2987. [Google Scholar]
  43. Przybysz AJ, Choe KP, Roberts LJ, Strange K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev 2009 ; 130 : 357–369. [CrossRef] [PubMed] [Google Scholar]
  44. Chow DK, Glenn CF, Johnston JL. et al. Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 2006 ; 41 : 252–260. [CrossRef] [PubMed] [Google Scholar]
  45. Capeau J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003 ; 19 : 834–839. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Perrini S, Laviola L, Carreira MC. et al. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 2010 ; 205 : 201–210. [CrossRef] [PubMed] [Google Scholar]
  47. Levine ME, Suarez JA, Brandhorst S. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014 ; 19 : 407–417. [CrossRef] [PubMed] [Google Scholar]
  48. Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. Nature 2016 ; 538 : 257–259. [CrossRef] [PubMed] [Google Scholar]
  49. Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ. How can diet affect the accumulation of advanced glycation end-products in the human body? Foods 2016; 5. [PubMed] [Google Scholar]
  50. Hsieh PN, Zhou G, Yuan Y. et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017 ; 8 : 914. [CrossRef] [PubMed] [Google Scholar]
  51. Teng MS, Dekkers MP, Ng BL. et al. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands. BMC Biol 2006 ; 4 : 22. [CrossRef] [PubMed] [Google Scholar]
  52. Dostal V, Link CD. Assaying beta-amyloid toxicity using a transgenic C. elegans model. J Vis Exp 2010; 44 : 2252. [Google Scholar]
  53. Bohnert KA, Kenyon C A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 2017; 551 : 629–633. [PubMed] [Google Scholar]
  54. Martin TD, Chen XW, Kaplan RE. et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 2014 ; 53 : 209–220. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.