Modèles alternatifs
Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 6-7, Juin–Juillet 2018
Modèles alternatifs
Page(s) 571 - 579
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183406017
Publié en ligne 31 juillet 2018
  1. Lopez-Otin C, Blasco MA, Partridge L. et al. The hallmarks of aging. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  2. Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics 2017 ; 18 : 385–407. [CrossRef] [PubMed] [Google Scholar]
  3. Dyer CA, Sinclair AJ. The premature ageing syndromes: insights into the ageing process. Age Ageing 1998 ; 27 : 73–80. [CrossRef] [PubMed] [Google Scholar]
  4. Blackburn EH. Telomeres and telomerase. Keio J Med 2000 ; 49 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  5. Moreira OC, Estebanez B, Martinez-Florez S. et al. Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxid Med Cell Longev 2017 ; 2017 : 2012798. [CrossRef] [PubMed] [Google Scholar]
  6. Vigie P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Kubben N, Zhang W, Wang L. et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 2016 ; 165 : 1361–1374. [CrossRef] [PubMed] [Google Scholar]
  8. Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 2011 ; 22 : 482–487. [CrossRef] [PubMed] [Google Scholar]
  9. Frimat M, Daroux M, Litke R. et al. Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017 ; 131 : 1069–1092. [CrossRef] [PubMed] [Google Scholar]
  10. Jaisson S, Desmons A, Gorisse L, Gillery P. Vieillissement moléculaire des protéines : quel rôle en physiopathologie ?. Med Sci (Paris) 2017 ; 33 : 176–182. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Fulop T, Dupuis G, Witkowski JM, Larbi A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev Invest Clin 2016 ; 68 : 84–91. [PubMed] [Google Scholar]
  12. Galas S, Chateau MT, Pomies P. et al. Aperçu de la diversité des modèles animaux dédiés à l’étude du vieillissement. Med Sci (Paris) 2012 ; 28 : 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977 ; 6 : 413–429. [CrossRef] [PubMed] [Google Scholar]
  14. Anderson JL, Morran LT, Phillips PC. Outcrossing and the maintenance of males within C. elegans populations. J Hered 2010 ; 101 : suppl 1S62–S74. [Google Scholar]
  15. Timmons L, Luna H, Martinez J. et al. Systematic comparison of bacterial feeding strains for increased yield of Caenorhabditis elegans males by RNA interference-induced non-disjunction. FEBS Lett 2014 ; 588 : 3347–3351. [CrossRef] [PubMed] [Google Scholar]
  16. Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011 ; 6 : e20085. [CrossRef] [PubMed] [Google Scholar]
  17. Collins JJ, Huang C, Hughes S, Kornfeld K. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook 2008 ; 1–21. [Google Scholar]
  18. Mobbs CV, Hof PR. Body composition and aging. Basel : Karger, 2010 ; 37 : I–VI. [CrossRef] [Google Scholar]
  19. Brenner S. The genetics of behaviour. Br Med Bull 1973 ; 29 : 269–271. [CrossRef] [PubMed] [Google Scholar]
  20. Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983 ; 22 : 279–286. [CrossRef] [PubMed] [Google Scholar]
  21. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988 ; 118 : 75–86. [PubMed] [Google Scholar]
  22. Kenyon C, Chang J, Gensch E. et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  23. Riddle DL, Albert PS. Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C elegans II. New York : Cold Spring Harbor, 1997. [Google Scholar]
  24. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997 ; 277 : 942–946. [Google Scholar]
  25. Van Heemst D. Insulin, IGF-1 and longevity. Aging Dis 2010 ; 1 : 147–157. [PubMed] [Google Scholar]
  26. Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009 ; 8 : 113–127. [CrossRef] [PubMed] [Google Scholar]
  27. Jordan B. Gènes et longévité : nouvelles données, nouvelles controverses. Med Sci (Paris) 2018 ; 34 : 485–487. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Willcox BJ, Donlon TA, He Q. et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008 ; 105 : 13987–13992. [CrossRef] [Google Scholar]
  29. Panowski SH, Wolff S, Aguilaniu H. et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007 ; 447 : 550–555. [CrossRef] [PubMed] [Google Scholar]
  30. Chaudhuri J, Bose N, Gong J. et al. A Caenorhabditis elegans model elucidates a conserved role for TRPA1-Nrf signaling in reactive alpha-dicarbonyl detoxification. Curr Biol 2016 ; 26 : 3014–3025. [CrossRef] [PubMed] [Google Scholar]
  31. Dingley S, Polyak E, Lightfoot R. et al. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion 2010 ; 10 : 125–136. [CrossRef] [PubMed] [Google Scholar]
  32. Mendler M, Schlotterer A, Ibrahim Y. et al. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015 ; 58 : 393–401. [CrossRef] [PubMed] [Google Scholar]
  33. Xu J, Guo Y, Sui T. et al. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 2017 ; 51 : 529–544. [Google Scholar]
  34. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001 ; 1 : 633–644. [CrossRef] [PubMed] [Google Scholar]
  35. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013 ; 153 : 1435–1447. [CrossRef] [PubMed] [Google Scholar]
  36. Walther DM, Kasturi P, Zheng M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 2015 ; 161 : 919–932. [CrossRef] [PubMed] [Google Scholar]
  37. McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta 2014 ; 1839 : 1454–1462. [CrossRef] [PubMed] [Google Scholar]
  38. Greer EL, Maures TJ, Hauswirth AG. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010 ; 466 : 383–387. [CrossRef] [PubMed] [Google Scholar]
  39. Jin C, Li J, Green CD. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011 ; 14 : 161–172. [CrossRef] [PubMed] [Google Scholar]
  40. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 2011 ; 7 : e1002306. [CrossRef] [PubMed] [Google Scholar]
  41. Nehammer C, Podolska A, Mackowiak SD. et al. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans. Sci Rep 2015 ; 5 : 8866. [CrossRef] [PubMed] [Google Scholar]
  42. Smith-Vikos T, Liu Z, Parsons C. et al. A serum miRNA profile of human longevity: findings from the Baltimore longitudinal study of aging (BLSA). Aging (Albany NY) 2016 ; 8 : 2971–2987. [Google Scholar]
  43. Przybysz AJ, Choe KP, Roberts LJ, Strange K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev 2009 ; 130 : 357–369. [CrossRef] [PubMed] [Google Scholar]
  44. Chow DK, Glenn CF, Johnston JL. et al. Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 2006 ; 41 : 252–260. [CrossRef] [PubMed] [Google Scholar]
  45. Capeau J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003 ; 19 : 834–839. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Perrini S, Laviola L, Carreira MC. et al. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 2010 ; 205 : 201–210. [CrossRef] [PubMed] [Google Scholar]
  47. Levine ME, Suarez JA, Brandhorst S. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014 ; 19 : 407–417. [CrossRef] [PubMed] [Google Scholar]
  48. Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. Nature 2016 ; 538 : 257–259. [CrossRef] [PubMed] [Google Scholar]
  49. Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ. How can diet affect the accumulation of advanced glycation end-products in the human body? Foods 2016; 5. [PubMed] [Google Scholar]
  50. Hsieh PN, Zhou G, Yuan Y. et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017 ; 8 : 914. [CrossRef] [PubMed] [Google Scholar]
  51. Teng MS, Dekkers MP, Ng BL. et al. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands. BMC Biol 2006 ; 4 : 22. [CrossRef] [PubMed] [Google Scholar]
  52. Dostal V, Link CD. Assaying beta-amyloid toxicity using a transgenic C. elegans model. J Vis Exp 2010; 44 : 2252. [Google Scholar]
  53. Bohnert KA, Kenyon C A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 2017; 551 : 629–633. [PubMed] [Google Scholar]
  54. Martin TD, Chen XW, Kaplan RE. et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 2014 ; 53 : 209–220. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.