Open Access
Med Sci (Paris)
Volume 34, Number 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
Page(s) 531 - 539
Section M/S Revues
Published online 31 July 2018
  1. Monod J. Recherches sur la croissance des cultures bactériennes. Thèse PhD, Institut Pasteur, Paris, France, 1942. [Google Scholar]
  2. Van der Stel AX, van de Lest CHA, Huynh S, et al. Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels. Environ Microbiol 2018 ; 20 : 1374–1388. [CrossRef] [PubMed] [Google Scholar]
  3. Poncet S, Milohanic E, Mazé A, et al. Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 2009 ; 16 : 88–102. [CrossRef] [PubMed] [Google Scholar]
  4. Moreno MS, Schneider BL, Maile RR, et al. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 2001 ; 39 : 1366–1381. [CrossRef] [PubMed] [Google Scholar]
  5. Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008 ; 6 : 613–624. [CrossRef] [PubMed] [Google Scholar]
  6. Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010 ; 34 : 658–684. [CrossRef] [PubMed] [Google Scholar]
  7. Wang X, Goh EB, Beller HR. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Microb Cell Fact 2018 ; 17 : 12. [CrossRef] [PubMed] [Google Scholar]
  8. Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 2008 ; 11 : 87–93. [CrossRef] [PubMed] [Google Scholar]
  9. Hoffee P, Englesberg E, Lamy F. The glucose permease system in bacteria. Biochim Biophys Acta 1964 ; 79 : 337–350. [CrossRef] [PubMed] [Google Scholar]
  10. Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 1964 ; 52 : 1067–1074. [CrossRef] [Google Scholar]
  11. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993 ; 57 : 543–594. [PubMed] [Google Scholar]
  12. Reizer J, Deutscher J, Saier MH. Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in gram-positive bacteria. Biochimie 1989 ; 71 : 989–996. [CrossRef] [PubMed] [Google Scholar]
  13. Galinier A, Kravanja M, Engelmann R, et al. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 1998 ; 95 : 1823–1828. [CrossRef] [Google Scholar]
  14. Galinier A, Deutscher J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 2017 ; 429 : 773–789. [Google Scholar]
  15. Bettenbrock K, Sauter T, Jahreis K, et al. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 2007 ; 189 : 6891–6900. [CrossRef] [PubMed] [Google Scholar]
  16. Amin N, Peterkofsky A. A dual mechanism for regulating cAMP levels in Escherichia coli. J Biol Chem 1995 ; 270 : 11803–11805. [CrossRef] [PubMed] [Google Scholar]
  17. Eron L, Arditti R, Zubay G, et al. An adenosine 3’:5’-cyclic monophosphate-binding protein that acts on the transcription process. Proc Natl Acad Sci USA 1971 ; 68 : 215–218. [CrossRef] [Google Scholar]
  18. Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002 ; 209 : 141–148. [CrossRef] [PubMed] [Google Scholar]
  19. Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2016 ; 62 : 39–45. [CrossRef] [PubMed] [Google Scholar]
  20. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors. Mol Microbiol 1991 ; 5 : 575–584. [CrossRef] [PubMed] [Google Scholar]
  21. Deutscher J, Küster E, Bergstedt U, et al. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 1995 ; 15 : 1049–1053. [CrossRef] [PubMed] [Google Scholar]
  22. Fujita Y, Miwa Y, Galinier A, Deutscher J. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 1995 ; 17 : 953–960. [CrossRef] [PubMed] [Google Scholar]
  23. Jault JM, Fieulaine S, Nessler S, et al. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 2000 ; 275 : 1773–1780. [CrossRef] [PubMed] [Google Scholar]
  24. Kravanja M, Engelmann R, Dossonnet V, et al. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 1999 ; 31 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  25. Hueck CJ, Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Mol Microbiol 1995 ; 15 : 395–401. [CrossRef] [PubMed] [Google Scholar]
  26. Miwa Y, Nakata A, Ogiwara A, et al. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 2000 ; 28 : 1206–1210. [CrossRef] [PubMed] [Google Scholar]
  27. Marciniak BC, Pabijaniak M, de Jong A, et al. High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genomics 2012 ; 13 : 401. [CrossRef] [PubMed] [Google Scholar]
  28. Galinier A, Haiech J, Kilhoffer MC, et al. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 1997 ; 94 : 8439–8444. [CrossRef] [Google Scholar]
  29. Landmann JJ, Werner S, Hillen W, et al. Carbon source control of the phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh in vivo. FEMS Microbiol Lett 2012 ; 327 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  30. Galinier A, Deutscher J, Martin-Verstraete I. Phosphorylation of either crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 1999 ; 286 : 307–314. [Google Scholar]
  31. Martin-Verstraete I, Deutscher J, Galinier A. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 1999 ; 181 : 2966–2969. [PubMed] [Google Scholar]
  32. Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I. PRD: a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 1998 ; 28 : 865–874. [CrossRef] [PubMed] [Google Scholar]
  33. Deutscher J, Aké FM, Derkaoui M, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2014 ; 78 : 231–256. [CrossRef] [PubMed] [Google Scholar]
  34. Lengeler JW, Jahreis K. Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol 2009 ; 16 : 65–87. [CrossRef] [PubMed] [Google Scholar]
  35. Wuttge S, Licht A, Timachi MH, et al. Mode of interaction of the signal-transducing protein EIIAGlc with the maltose ABC transporter in the process of inducer exclusion. Biochemistry 2016 ; 55 : 5442–5452. [CrossRef] [PubMed] [Google Scholar]
  36. Monedero V, Yebra MJ, Poncet S, Deutscher J. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 2008 ; 159 : 94–102. [CrossRef] [PubMed] [Google Scholar]
  37. Kuhlmann N, Petrov DP, Henrich AW, et al. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology 2015 ; 161 : 1830–1843. [CrossRef] [PubMed] [Google Scholar]
  38. Aké FM, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011 ; 81 : 274–293. [CrossRef] [PubMed] [Google Scholar]
  39. Romero-Rodríguez A, Rocha D, Ruiz-Villafán B, et al. Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World J Microbiol Biotechnol 2017 ; 33 : 162. [CrossRef] [PubMed] [Google Scholar]
  40. Tuncil YE, Xiao Y, Porter NT, et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 2017; 8. [Google Scholar]
  41. Cao Y, Förstner KU, Vogel J, Smith CJ. cis-Encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in bacteroides. J Bacteriol 2016 ; 198 : 2410–2418. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.