Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
Page(s) 531 - 539
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183406012
Publié en ligne 31 juillet 2018
  1. Monod J. Recherches sur la croissance des cultures bactériennes. Thèse PhD, Institut Pasteur, Paris, France, 1942. [Google Scholar]
  2. Van der Stel AX, van de Lest CHA, Huynh S, et al. Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels. Environ Microbiol 2018 ; 20 : 1374–1388. [CrossRef] [PubMed] [Google Scholar]
  3. Poncet S, Milohanic E, Mazé A, et al. Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 2009 ; 16 : 88–102. [CrossRef] [PubMed] [Google Scholar]
  4. Moreno MS, Schneider BL, Maile RR, et al. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 2001 ; 39 : 1366–1381. [CrossRef] [PubMed] [Google Scholar]
  5. Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008 ; 6 : 613–624. [CrossRef] [PubMed] [Google Scholar]
  6. Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010 ; 34 : 658–684. [CrossRef] [PubMed] [Google Scholar]
  7. Wang X, Goh EB, Beller HR. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Microb Cell Fact 2018 ; 17 : 12. [CrossRef] [PubMed] [Google Scholar]
  8. Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 2008 ; 11 : 87–93. [CrossRef] [PubMed] [Google Scholar]
  9. Hoffee P, Englesberg E, Lamy F. The glucose permease system in bacteria. Biochim Biophys Acta 1964 ; 79 : 337–350. [CrossRef] [PubMed] [Google Scholar]
  10. Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 1964 ; 52 : 1067–1074. [CrossRef] [Google Scholar]
  11. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993 ; 57 : 543–594. [PubMed] [Google Scholar]
  12. Reizer J, Deutscher J, Saier MH. Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in gram-positive bacteria. Biochimie 1989 ; 71 : 989–996. [CrossRef] [PubMed] [Google Scholar]
  13. Galinier A, Kravanja M, Engelmann R, et al. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 1998 ; 95 : 1823–1828. [CrossRef] [Google Scholar]
  14. Galinier A, Deutscher J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 2017 ; 429 : 773–789. [Google Scholar]
  15. Bettenbrock K, Sauter T, Jahreis K, et al. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 2007 ; 189 : 6891–6900. [CrossRef] [PubMed] [Google Scholar]
  16. Amin N, Peterkofsky A. A dual mechanism for regulating cAMP levels in Escherichia coli. J Biol Chem 1995 ; 270 : 11803–11805. [CrossRef] [PubMed] [Google Scholar]
  17. Eron L, Arditti R, Zubay G, et al. An adenosine 3’:5’-cyclic monophosphate-binding protein that acts on the transcription process. Proc Natl Acad Sci USA 1971 ; 68 : 215–218. [CrossRef] [Google Scholar]
  18. Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002 ; 209 : 141–148. [CrossRef] [PubMed] [Google Scholar]
  19. Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2016 ; 62 : 39–45. [CrossRef] [PubMed] [Google Scholar]
  20. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors. Mol Microbiol 1991 ; 5 : 575–584. [CrossRef] [PubMed] [Google Scholar]
  21. Deutscher J, Küster E, Bergstedt U, et al. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 1995 ; 15 : 1049–1053. [CrossRef] [PubMed] [Google Scholar]
  22. Fujita Y, Miwa Y, Galinier A, Deutscher J. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 1995 ; 17 : 953–960. [CrossRef] [PubMed] [Google Scholar]
  23. Jault JM, Fieulaine S, Nessler S, et al. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 2000 ; 275 : 1773–1780. [CrossRef] [PubMed] [Google Scholar]
  24. Kravanja M, Engelmann R, Dossonnet V, et al. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 1999 ; 31 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  25. Hueck CJ, Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Mol Microbiol 1995 ; 15 : 395–401. [CrossRef] [PubMed] [Google Scholar]
  26. Miwa Y, Nakata A, Ogiwara A, et al. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 2000 ; 28 : 1206–1210. [CrossRef] [PubMed] [Google Scholar]
  27. Marciniak BC, Pabijaniak M, de Jong A, et al. High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genomics 2012 ; 13 : 401. [CrossRef] [PubMed] [Google Scholar]
  28. Galinier A, Haiech J, Kilhoffer MC, et al. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 1997 ; 94 : 8439–8444. [CrossRef] [Google Scholar]
  29. Landmann JJ, Werner S, Hillen W, et al. Carbon source control of the phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh in vivo. FEMS Microbiol Lett 2012 ; 327 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  30. Galinier A, Deutscher J, Martin-Verstraete I. Phosphorylation of either crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 1999 ; 286 : 307–314. [Google Scholar]
  31. Martin-Verstraete I, Deutscher J, Galinier A. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 1999 ; 181 : 2966–2969. [PubMed] [Google Scholar]
  32. Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I. PRD: a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 1998 ; 28 : 865–874. [CrossRef] [PubMed] [Google Scholar]
  33. Deutscher J, Aké FM, Derkaoui M, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2014 ; 78 : 231–256. [CrossRef] [PubMed] [Google Scholar]
  34. Lengeler JW, Jahreis K. Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol 2009 ; 16 : 65–87. [CrossRef] [PubMed] [Google Scholar]
  35. Wuttge S, Licht A, Timachi MH, et al. Mode of interaction of the signal-transducing protein EIIAGlc with the maltose ABC transporter in the process of inducer exclusion. Biochemistry 2016 ; 55 : 5442–5452. [CrossRef] [PubMed] [Google Scholar]
  36. Monedero V, Yebra MJ, Poncet S, Deutscher J. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 2008 ; 159 : 94–102. [CrossRef] [PubMed] [Google Scholar]
  37. Kuhlmann N, Petrov DP, Henrich AW, et al. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology 2015 ; 161 : 1830–1843. [CrossRef] [PubMed] [Google Scholar]
  38. Aké FM, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011 ; 81 : 274–293. [CrossRef] [PubMed] [Google Scholar]
  39. Romero-Rodríguez A, Rocha D, Ruiz-Villafán B, et al. Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World J Microbiol Biotechnol 2017 ; 33 : 162. [CrossRef] [PubMed] [Google Scholar]
  40. Tuncil YE, Xiao Y, Porter NT, et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 2017; 8. [Google Scholar]
  41. Cao Y, Förstner KU, Vogel J, Smith CJ. cis-Encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in bacteroides. J Bacteriol 2016 ; 198 : 2410–2418. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.