Free Access
Issue |
Med Sci (Paris)
Volume 34, Number 5, Mai 2018
|
|
---|---|---|
Page(s) | 407 - 416 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183405013 | |
Published online | 13 June 2018 |
- Colombo S, Berlin I, Delmas V, Larue L. Classical and non-classical melanocytes in vertebrates. In : Riley PA, Borovansky J, eds. Melanins and melanosomes. Weinheim : Wiley-VCH Verlag Co, 2011 : 21–51. [CrossRef] [Google Scholar]
- Yajima I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res 2008 ; 21 : 471–476. [Google Scholar]
- Gudjohnsen SA, Atacho DA, Gesbert F, et al. Meningeal melanocytes in the mouse: distribution and dependence on. Front Neuroanat 2015 ; 9 : 149. [CrossRef] [PubMed] [Google Scholar]
- Brito FC, Kos L. Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res 2008 ; 21 : 464–470. [Google Scholar]
- Amiel J, Watkin PM, Tassabehji M, et al. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998 ; 7 : 17–20. [Google Scholar]
- Oiso N, Suzuki T, Wataya-Kaneda M, et al. Guidelines for the diagnosis and treatment of vitiligo in Japan. J Dermatol 2013 ; 40 : 344–354. [CrossRef] [PubMed] [Google Scholar]
- Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res 1999 ; 12 : 344–354. [CrossRef] [PubMed] [Google Scholar]
- Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development 2015 ; 142 : 620–632. [CrossRef] [PubMed] [Google Scholar]
- Kinsler VA, Larue L. The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment Cell Melanoma Res 2018 ; 31 : 95–109. [Google Scholar]
- Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015 ; 136 : E359–E386. [CrossRef] [PubMed] [Google Scholar]
- Clark WH Jr, Elder DE, Guerry DT, et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984 ; 15 : 1147–1165. [CrossRef] [PubMed] [Google Scholar]
- Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 1970 ; 172 : 902–908. [CrossRef] [PubMed] [Google Scholar]
- Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009 ; 27 : 6199–6206. [CrossRef] [PubMed] [Google Scholar]
- Network Cancer Genome Atlas. Electronic address imo, cancer genome atlas. Genomic classification of cutaneous melanoma. Cell 2015 ; 161 : 1681–1696. [Google Scholar]
- Allouche J, Bellon N, Saidani M, et al. In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells. Proc Natl Acad Sci USA 2015 ; 112 : 9034–9039. [CrossRef] [Google Scholar]
- Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification of melanoma. J Clin Oncol 2007 ; 25 : 1606–1620. [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res 2016 ; 29 : 266–283. [Google Scholar]
- Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006 ; 11 : 733–742. [Google Scholar]
- Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013 ; 499 : 214–218. [CrossRef] [PubMed] [Google Scholar]
- Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017. pii: S1044–579X(17)30130-X. [Google Scholar]
- Carreira S, Goodall J, Denat L, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006 ; 20 : 3426–3439. [CrossRef] [PubMed] [Google Scholar]
- Hoek KS, Goding CR. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010 ; 23 : 746–759. [Google Scholar]
- Strub T, Giuliano S, Ye T, et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011 ; 30 : 2319–2332. [Google Scholar]
- Goding CR. Commentary. A picture of Mitf in melanoma immortality. Oncogene 2011 ; 30 : 2304–2306. [Google Scholar]
- Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent beta-catenin signaling. Pigment Cell Melanoma Res 2016 ; 29 : 524–540. [Google Scholar]
- Riesenberg S, Groetchen A, Siddaway R, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun 2015 ; 6 : 8755. [CrossRef] [PubMed] [Google Scholar]
- Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014 ; 507 : 109–113. [CrossRef] [PubMed] [Google Scholar]
- Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011 ; 364 : 2507–2516. [Google Scholar]
- Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 2017 ; 28 : 1631–1639. [CrossRef] [PubMed] [Google Scholar]
- Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017 ; 14 : 463–482. [PubMed] [Google Scholar]
- Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 2015 ; 372 : 2521–2532. [Google Scholar]
- Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014 ; 32 : 1020–1030. [CrossRef] [PubMed] [Google Scholar]
- Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369 : 122–133. [Google Scholar]
- Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012 ; 380 : 358–365. [CrossRef] [PubMed] [Google Scholar]
- Shi H, Moriceau G, Kong X, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012 ; 3 : 724. [CrossRef] [PubMed] [Google Scholar]
- Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010 ; 18 : 683–695. [CrossRef] [PubMed] [Google Scholar]
- Spagnolo F, Ghiorzo P, Queirolo P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 2014 ; 5 : 10206–10221. [CrossRef] [PubMed] [Google Scholar]
- Shi H, Kong X, Ribas A, Lo RS. Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 2011 ; 71 : 5067–5074. [Google Scholar]
- Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 2015 ; 162 : 1271–1285. [CrossRef] [PubMed] [Google Scholar]
- Johannessen CM, Johnson LA, Piccioni F, et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013 ; 504 : 138–142. [CrossRef] [PubMed] [Google Scholar]
- Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med 2016 ; 375 : 819–829. [Google Scholar]
- Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016 ; 6 : 202–216. [CrossRef] [PubMed] [Google Scholar]
- Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017 ; 168 : 707–723. [CrossRef] [PubMed] [Google Scholar]
- Rambow F, Job B, Petit V, et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep 2015 ; 13 : 840–853. [CrossRef] [PubMed] [Google Scholar]
- Aktary Z, McMahon M, Larue L. Animal models of melanoma. In: Fisher DE, Bastian BC, eds. Melanoma. New York : Springer Science, Business Media LLC, 2018. [Google Scholar]
- Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005 ; 15 : 249–254. [CrossRef] [PubMed] [Google Scholar]
- Kim IS, Heilmann S, Kansler ER, et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat Commun 2017 ; 8 : 14343. [CrossRef] [PubMed] [Google Scholar]
- Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008 ; 8 : 299–308. [Google Scholar]
- Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013 ; 13 : 525–541. [Google Scholar]
- Völkel P, Dupret B, Le Bourhis X, Angrand PO. Le modèle poisson zèbre dans la lutte contre le cancer. Med Sci (Paris) 2018 ; 34 : 345–353. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.