Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 5, Mai 2018
|
|
---|---|---|
Page(s) | 407 - 416 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183405013 | |
Publié en ligne | 13 juin 2018 |
- Colombo S, Berlin I, Delmas V, Larue L. Classical and non-classical melanocytes in vertebrates. In : Riley PA, Borovansky J, eds. Melanins and melanosomes. Weinheim : Wiley-VCH Verlag Co, 2011 : 21–51. [CrossRef] [Google Scholar]
- Yajima I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res 2008 ; 21 : 471–476. [Google Scholar]
- Gudjohnsen SA, Atacho DA, Gesbert F, et al. Meningeal melanocytes in the mouse: distribution and dependence on. Front Neuroanat 2015 ; 9 : 149. [CrossRef] [PubMed] [Google Scholar]
- Brito FC, Kos L. Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res 2008 ; 21 : 464–470. [Google Scholar]
- Amiel J, Watkin PM, Tassabehji M, et al. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998 ; 7 : 17–20. [Google Scholar]
- Oiso N, Suzuki T, Wataya-Kaneda M, et al. Guidelines for the diagnosis and treatment of vitiligo in Japan. J Dermatol 2013 ; 40 : 344–354. [CrossRef] [PubMed] [Google Scholar]
- Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res 1999 ; 12 : 344–354. [CrossRef] [PubMed] [Google Scholar]
- Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development 2015 ; 142 : 620–632. [CrossRef] [PubMed] [Google Scholar]
- Kinsler VA, Larue L. The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment Cell Melanoma Res 2018 ; 31 : 95–109. [Google Scholar]
- Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015 ; 136 : E359–E386. [CrossRef] [PubMed] [Google Scholar]
- Clark WH Jr, Elder DE, Guerry DT, et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984 ; 15 : 1147–1165. [CrossRef] [PubMed] [Google Scholar]
- Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 1970 ; 172 : 902–908. [CrossRef] [PubMed] [Google Scholar]
- Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009 ; 27 : 6199–6206. [CrossRef] [PubMed] [Google Scholar]
- Network Cancer Genome Atlas. Electronic address imo, cancer genome atlas. Genomic classification of cutaneous melanoma. Cell 2015 ; 161 : 1681–1696. [Google Scholar]
- Allouche J, Bellon N, Saidani M, et al. In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells. Proc Natl Acad Sci USA 2015 ; 112 : 9034–9039. [CrossRef] [Google Scholar]
- Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification of melanoma. J Clin Oncol 2007 ; 25 : 1606–1620. [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res 2016 ; 29 : 266–283. [Google Scholar]
- Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006 ; 11 : 733–742. [Google Scholar]
- Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013 ; 499 : 214–218. [CrossRef] [PubMed] [Google Scholar]
- Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017. pii: S1044–579X(17)30130-X. [Google Scholar]
- Carreira S, Goodall J, Denat L, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006 ; 20 : 3426–3439. [CrossRef] [PubMed] [Google Scholar]
- Hoek KS, Goding CR. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010 ; 23 : 746–759. [Google Scholar]
- Strub T, Giuliano S, Ye T, et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011 ; 30 : 2319–2332. [Google Scholar]
- Goding CR. Commentary. A picture of Mitf in melanoma immortality. Oncogene 2011 ; 30 : 2304–2306. [Google Scholar]
- Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent beta-catenin signaling. Pigment Cell Melanoma Res 2016 ; 29 : 524–540. [Google Scholar]
- Riesenberg S, Groetchen A, Siddaway R, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun 2015 ; 6 : 8755. [CrossRef] [PubMed] [Google Scholar]
- Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014 ; 507 : 109–113. [CrossRef] [PubMed] [Google Scholar]
- Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011 ; 364 : 2507–2516. [Google Scholar]
- Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 2017 ; 28 : 1631–1639. [CrossRef] [PubMed] [Google Scholar]
- Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017 ; 14 : 463–482. [PubMed] [Google Scholar]
- Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 2015 ; 372 : 2521–2532. [Google Scholar]
- Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014 ; 32 : 1020–1030. [CrossRef] [PubMed] [Google Scholar]
- Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369 : 122–133. [Google Scholar]
- Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012 ; 380 : 358–365. [CrossRef] [PubMed] [Google Scholar]
- Shi H, Moriceau G, Kong X, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012 ; 3 : 724. [CrossRef] [PubMed] [Google Scholar]
- Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010 ; 18 : 683–695. [CrossRef] [PubMed] [Google Scholar]
- Spagnolo F, Ghiorzo P, Queirolo P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 2014 ; 5 : 10206–10221. [CrossRef] [PubMed] [Google Scholar]
- Shi H, Kong X, Ribas A, Lo RS. Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 2011 ; 71 : 5067–5074. [Google Scholar]
- Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 2015 ; 162 : 1271–1285. [CrossRef] [PubMed] [Google Scholar]
- Johannessen CM, Johnson LA, Piccioni F, et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013 ; 504 : 138–142. [CrossRef] [PubMed] [Google Scholar]
- Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med 2016 ; 375 : 819–829. [Google Scholar]
- Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016 ; 6 : 202–216. [CrossRef] [PubMed] [Google Scholar]
- Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017 ; 168 : 707–723. [CrossRef] [PubMed] [Google Scholar]
- Rambow F, Job B, Petit V, et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep 2015 ; 13 : 840–853. [CrossRef] [PubMed] [Google Scholar]
- Aktary Z, McMahon M, Larue L. Animal models of melanoma. In: Fisher DE, Bastian BC, eds. Melanoma. New York : Springer Science, Business Media LLC, 2018. [Google Scholar]
- Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005 ; 15 : 249–254. [CrossRef] [PubMed] [Google Scholar]
- Kim IS, Heilmann S, Kansler ER, et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat Commun 2017 ; 8 : 14343. [CrossRef] [PubMed] [Google Scholar]
- Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008 ; 8 : 299–308. [Google Scholar]
- Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013 ; 13 : 525–541. [Google Scholar]
- Völkel P, Dupret B, Le Bourhis X, Angrand PO. Le modèle poisson zèbre dans la lutte contre le cancer. Med Sci (Paris) 2018 ; 34 : 345–353. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.