Free Access
Issue
Med Sci (Paris)
Volume 33, Number 12, Décembre 2017
Page(s) 1079 - 1088
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173312015
Published online 20 December 2017
  1. Rigourd V, Chelbi ST, Vaiman D. La pré-éclampsie. Med Sci (Paris) 2008 ; 24 : 1017–1019. [CrossRef] [Google Scholar]
  2. Robillard PY, Scioscia M, Coppola D, et al. La « Donna di Ostuni », a case of eclampsia 28,000 years ago?. J Matern Fetal Neonatal Med 2017 : 1–4. [Google Scholar]
  3. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011 ; 123 : 2856–2869. [CrossRef] [PubMed] [Google Scholar]
  4. Sergent F, Hoffmann P, Brouillet S, et al. Sustained endocrine gland-derived vascular endothelial growth factor levels beyond the first trimester of pregnancy display phenotypic and functional changes associated with the pathogenesis of pregnancy-induced hypertension. Hypertension 2016 ; 68 : 148–156. [CrossRef] [PubMed] [Google Scholar]
  5. Vikse BE, Irgens LM, Leivestad T, et al. Preeclampsia and the risk of end-stage renal disease. N Engl J Med 2008 ; 359 : 800–809. [Google Scholar]
  6. Timpka S, Macdonald-Wallis C, Hughes AD, et al. Hypertensive disorders of pregnancy and offspring cardiac structure and function in adolescence. J Am Heart Assoc 2016; 5. [Google Scholar]
  7. Buffat C, Mondon F, Rigourd V, et al. A hierarchical analysis of transcriptome alterations in intrauterine growth restriction (IUGR) reveals common pathophysiological pathways in mammals. J Pathol 2007 ; 213 : 337–346. [CrossRef] [PubMed] [Google Scholar]
  8. Amaral LM, Cunningham MW Jr., Cornelius DC, LaMarca B. Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag 2015 ; 11 : 403–415. [Google Scholar]
  9. van Kesteren F, Visser S, Hermes W, et al. Prevention of cardiovascular risk in women who had hypertension during pregnancy after 36 weeks gestation. Hypertens Pregnancy 2015 ; 34 : 261–269. [CrossRef] [PubMed] [Google Scholar]
  10. Mongraw-Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 2010 ; 56 : 166–171. [CrossRef] [PubMed] [Google Scholar]
  11. Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A 2004; 130A : 365–371. [CrossRef] [PubMed] [Google Scholar]
  12. Staines-Urias E, Paez MC, Doyle P, et al. Genetic association studies in pre-eclampsia: systematic meta-analyses and field synopsis. Int J Epidemiol 2012 ; 41 : 1764–1775. [CrossRef] [PubMed] [Google Scholar]
  13. McGinnis R, Steinthorsdottir V, Williams NO, et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 2017 ; 49 : 1255–1260. [Google Scholar]
  14. Chelbi ST, Wilson ML, Veillard AC, et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum Mol Genet 2012 ; 21 : 1968–1978. [CrossRef] [PubMed] [Google Scholar]
  15. Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta 2017 ; 52 : 127–133. [CrossRef] [PubMed] [Google Scholar]
  16. Doridot L, Miralles F, Barbaux S, Vaiman D. Trophoblasts, invasion, and microRNA. Front Genet 2013 ; 4 : 248. [CrossRef] [PubMed] [Google Scholar]
  17. Lagana AS, Vitale SG, Sapia F, et al. miRNA expression for early diagnosis of preeclampsia onset: hope or hype?. J Matern Fetal Neonatal Med 2017 : 1–5. [Google Scholar]
  18. LaMarca B, Cornelius D, Wallace K. Elucidating immune mechanisms causing hypertension during pregnancy. Physiology (Bethesda) 2013 ; 28 : 225–233. [PubMed] [Google Scholar]
  19. Robillard PY, Hulsey TC. Association of pregnancy-induced-hypertension, pre-eclampsia, and eclampsia with duration of sexual cohabitation before conception. Lancet 1996 ; 347 : 619. [CrossRef] [PubMed] [Google Scholar]
  20. Hiby SE, Apps R, Sharkey AM, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 2010 ; 120 : 4102–4110. [CrossRef] [PubMed] [Google Scholar]
  21. Schwede S, Alfer J, von Rango U. Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases. Placenta 2014 ; 35 : 378–385. [CrossRef] [PubMed] [Google Scholar]
  22. Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol 2013 ; 1 : 244–257. [CrossRef] [PubMed] [Google Scholar]
  23. Elliot MG. Oxidative stress and the evolutionary origins of preeclampsia. J Reprod Immunol 2016 ; 114 : 75–80. [CrossRef] [PubMed] [Google Scholar]
  24. Challier JC, Uzan S. Le placenta humain et ses pathologies : l’oxygène en question. Med Sci (Paris) 2003 ; 19 : 1111–1120. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Shi Z, Long W, Zhao C, et al. Comparative proteomics analysis suggests that placental mitochondria are involved in the development of pre-eclampsia. PLoS One 2013 ; 8 : e64351. [CrossRef] [PubMed] [Google Scholar]
  26. Many A, Hubel CA, Fisher SJ, et al. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 2000 ; 156 : 321–331. [CrossRef] [PubMed] [Google Scholar]
  27. Matsubara K, Matsubara Y, Hyodo S, et al. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res 2010 ; 36 : 239–247. [CrossRef] [PubMed] [Google Scholar]
  28. Dechend R, Viedt C, Muller DN, et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003 ; 107 : 1632–1639. [CrossRef] [PubMed] [Google Scholar]
  29. Myatt L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010 ; 31 (suppl) : S66–S69. [CrossRef] [PubMed] [Google Scholar]
  30. Sanchez-Aranguren LC, Prada CE, Riano-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol 2014 ; 5 : 372. [CrossRef] [PubMed] [Google Scholar]
  31. Bilodeau JF. Review: maternal and placental antioxidant response to preeclampsia – impact on vasoactive eicosanoids. Placenta 2014 ; 35 (suppl) : S32–S38. [CrossRef] [PubMed] [Google Scholar]
  32. Erlandsson L, Naav A, Hennessy A, et al. Inventory of Novel Animal Models Addressing Etiology of Preeclampsia in the Development of New Therapeutic/Intervention Opportunities. Am J Reprod Immunol 2016 ; 75 : 402–410. [Google Scholar]
  33. Orendi K, Gauster M, Moser G, et al. Effects of vitamins C and E, acetylsalicylic acid and heparin on fusion, beta-hCG and PP13 expression in BeWo cells. Placenta 2010 ; 31 : 431–438. [CrossRef] [PubMed] [Google Scholar]
  34. Rigourd V, Chauvet C, Chelbi ST, et al. STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas. PLoS One 2008 ; 3 : e3905. [CrossRef] [PubMed] [Google Scholar]
  35. Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med 2015 ; 21 : 88–97. [CrossRef] [PubMed] [Google Scholar]
  36. Calicchio R, Buffat C, Mathieu JR, et al. Preeclamptic plasma induces transcription modifications involving the AP-1 transcriptional regulator JDP2 in endothelial cells. Am J Pathol 2013 ; 183 : 1993–2006. [CrossRef] [PubMed] [Google Scholar]
  37. Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 2016 ; 353 : i1753. [Google Scholar]
  38. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017 ; 377 : 613–622. [Google Scholar]
  39. Poon LC, Wright D, Rolnik DL, et al. Aspirin for evidence-based preeclampsia prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol 2017; pii : S0002–9378(17)30929–8. doi: 10.1016/j.ajog.2017.07.038. [Google Scholar]
  40. Zeisler H, Llurba E, Chantraine F, et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N Engl J Med 2016 ; 374 : 13–22. [Google Scholar]
  41. Rodger MA, Gris JC, de Vries JIP, et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet 2016 ; 388 : 2629–2641. [CrossRef] [PubMed] [Google Scholar]
  42. Lefkou E, Mamopoulos A, Dagklis T, et al. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin invest 2016 ; 126 : 2933–2940. [CrossRef] [PubMed] [Google Scholar]
  43. Gram M, Anderson UD, Johansson ME, et al. The human endogenous protection system against cell-free hemoglobin and heme is overwhelmed in preeclampsia and provides potential biomarkers and clinical indicators. PLoS One 2015 ; 10 : e0138111. [CrossRef] [PubMed] [Google Scholar]
  44. Brownfoot FC, Hastie R, Hannan NJ, et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am J Obstet Gynecol 2016 ; 214 : 356 e1–15. [Google Scholar]
  45. King A, Ndifon C, Lui S, et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv 2016 ; 2 : e1600349. [CrossRef] [PubMed] [Google Scholar]
  46. Thadhani R, Kisner T, Hagmann H, et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 2011 ; 124 : 940–950. [CrossRef] [PubMed] [Google Scholar]
  47. Brouillet S, Hoffmann P, Alfaidy N, Feige JJ. Prokinéticines. De nouveaux peptides régulateurs de la reproduction humaine. Med Sci (Paris) 2014 ; 30 : 274–279. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.