Free Access
Med Sci (Paris)
Volume 33, Number 11, Novembre 2017
Page(s) 971 - 978
Section M/S Revues
Published online 04 December 2017
  1. Jeffreys AJ, Wilson V, Thein SL. Individual-specific fingerprints of human DNA. Nature 1985 ; 316 : 76–79. [CrossRef] [PubMed] [Google Scholar]
  2. Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988 ; 239 : 487–491. [CrossRef] [PubMed] [Google Scholar]
  3. Butler JM. Short tandem repeat typing technologies used in human identity testing. BioTechniques 2007; 43 : ii–v. [CrossRef] [PubMed] [Google Scholar]
  4. Fan H, Chu JY. A Brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics 2007 ; 5 : 7–14. [Google Scholar]
  5. Butler JM. STR Alleles and amplification artifacts. Chapter 3. Advanced topics in forensic DNA typing: interpretation. San Diego : Academic Press, 2015 : 47–86. [CrossRef] [Google Scholar]
  6. Jalby C La police technique et scientifique. Paris : PUF, 2014 : 128 p [Google Scholar]
  7. Butler JM. DNA Profile frequency estimates and match probabilities. Chapter 11. Advanced topics in forensic DNA typing: interpretation. San Diego : Academic Press, 2015 : 281–308. [CrossRef] [Google Scholar]
  8. Coquoz R, Taroni F. Preuve par l’ADN : la génétique au service de la justice. Paris : PPUR Presses Polytechniques, 2013 : 370p. [Google Scholar]
  9. Alaeddini R. Forensic implications of PCR inhibition: a review. Forensic Sci Int Genet 2012 ; 6 : 297–305. [CrossRef] [PubMed] [Google Scholar]
  10. Mulero JJ, Chang CW, Lagacé RE, et al. Development and validation of the AmpFSTR MiniFilerTM PCR amplification kit: a MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. Minifiler kit validation. J Forensic Sci 2008 ; 53 : 838–852. [CrossRef] [Google Scholar]
  11. Flores S, Sun J, King J, et al. Internal validation of the GlobalFilerTM Express PCR amplification kit for the direct amplification of reference DNA samples on a high-throughput automated workflow. Forensic Sci Int Genet 2014 ; 10 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  12. Jäger AC, Alvarez ML, Davis CP, et al. Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int Genet 2017 ; 28 : 52–70. [CrossRef] [PubMed] [Google Scholar]
  13. Hiroaki N, Koji F, Tetsushi K, et al. Approaches for identifying multiple-SNP haplotype blocks for use in human identification. Leg Med Tokyo Jpn 2015 ; 17 : 415–420. [CrossRef] [Google Scholar]
  14. Schneider PM, Fimmers R, Keil W, et al. The german stain commission: recommendations for the interpretation of mixed stains. Int J Legal Med 2009 ; 123 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  15. Bieber FR, Buckleton JS, Budowle B, et al. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet 2016 ; 17 : 125. [CrossRef] [PubMed] [Google Scholar]
  16. Nurit B, Anat G, Michal S, et al. Evaluating the prevalence of DNA mixtures found in fingernail samples from victims and suspects in homicide cases. Forensic Sci Int Genet 2011 ; 5 : 532–537. [CrossRef] [PubMed] [Google Scholar]
  17. Bill M, Gill P, Curran J, et al. PENDULUM: a guideline-based approach to the interpretation of STR mixtures. Forensic Sci Int 2005 ; 148 : 181–189. [CrossRef] [PubMed] [Google Scholar]
  18. Haned H, Benschop CCG, Gill PD, et al. Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci Int Genet 2015 ; 16 : 17–25. [CrossRef] [PubMed] [Google Scholar]
  19. Slooten KJ. Accurate assessment of the weight of evidence for DNA mixtures by integrating the likelihood ratio. Forensic Sci Int Genet 2017 ; 27 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  20. Slooten KJ, Egeland T. Exclusion probabilities and likelihood ratios with applications to mixtures. Int J Legal Med 2016 ; 130 : 39–57. [CrossRef] [PubMed] [Google Scholar]
  21. Vuichard S, Borer U, Bottinelli M, et al. Differential DNA extraction of challenging simulated sexual-assault samples: a Swiss collaborative study. Investig Genet 2011 ; 2 : 11. [CrossRef] [PubMed] [Google Scholar]
  22. Klein SB, Buoncristiani MR. Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence. Forensic Sci Int Genet 2017 ; 29 : 109–117. [CrossRef] [PubMed] [Google Scholar]
  23. Vandewoestyne M, Deforce D. Laser capture microdissection in forensic research: a review. Int J Legal Med 2010 ; 124 : 513–521. [CrossRef] [PubMed] [Google Scholar]
  24. Bruijns B, van Asten A, Tiggelaar R, et al. Microfluidic devices for forensic DNA analysis: a review. Biosensors 2016 ; 6 : [Google Scholar]
  25. Fontana F, Rapone C, Bregola G, et al. Isolation and genetic analysis of pure cells from forensic biological mixtures: the precision of a digital approach. Forensic Sci Int Genet 2017 ; 29 : 225–241. [CrossRef] [PubMed] [Google Scholar]
  26. Hansson O, Gill P. Characterisation of artefacts and drop-in events using STR-validator and single-cell analysis. Forensic Sci Int Genet 2017 ; 30 : 57–65. [CrossRef] [PubMed] [Google Scholar]
  27. Rockenbauer E, Hansen S, Mikkelsen M, et al. Characterization of mutations and sequence variants in the D21S11 locus by next generation sequencing. Forensic Sci Int Genet 2014 ; 8 : 68–72. [CrossRef] [PubMed] [Google Scholar]
  28. Gettings KB, Aponte RA, Vallone PM, et al. STR allele sequence variation: Current knowledge and future issues. Forensic Sci Int Genet 2015 ; 18 : 118–130. [CrossRef] [PubMed] [Google Scholar]
  29. Gettings KB, Kiesler KM, Faith SA, et al. Sequence variation of 22 autosomal STR loci detected by next generation sequencing. Forensic Sci Int Genet 2016 ; 21 : 15–21. [CrossRef] [PubMed] [Google Scholar]
  30. Børsting C, Morling N. Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 2015 ; 18 : 78–89. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.