Free Access
Issue |
Med Sci (Paris)
Volume 33, Number 11, Novembre 2017
|
|
---|---|---|
Page(s) | 963 - 970 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173311013 | |
Published online | 04 December 2017 |
- Pinaud E, Marquet M, Fiancette R, et al. The IgH locus 3’ regulatory region: pulling the strings from behind. Adv Immunol 2011 ; 110 : 27–70. [CrossRef] [PubMed] [Google Scholar]
- Perlot T, Alt FW, Bassing CH, et al. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA 2005 ; 42 : 14362–14367. [CrossRef] [Google Scholar]
- Marquet M, Garot A, Bender S, et al. The Eµ enhancer region influences H chain expression and B cell fate without impacting IgVH repertoire and immune response in vivo. J Immunol 2014 ; 193 : 1171–1183. [CrossRef] [PubMed] [Google Scholar]
- Chauveau C, Cogné M. Palindromic structure of the IgH 3’ locus control region. Nat Genet 1996 ; 14 : 15–16. [Google Scholar]
- Birshtein BK. Epigenic regulation of individual modules of the immunoglobulin heavy chain 3’ regulatory region. Front Immunol 2014 ; 5 : 163. [CrossRef] [PubMed] [Google Scholar]
- Garot A, Marquet M, Saintamand A, et al. Sequential activation and distinct functions for distal and proximal modules within the IgH 3’RR region. Proc Natl Acad Sci USA 2016 ; 113 : 1618–1623. [CrossRef] [Google Scholar]
- Péron S, Laffleur B, Denis-Lagache N, et al. AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells. Science 2012 ; 336 : 931–934. [Google Scholar]
- Péron S, Laffleur B, Denis-Lagache N, et al. Recombinaisons suicides du locus IgH : quand le lymphocyte B dépose les armes !. Med Sci (Paris) 2012 ; 28 : 551–554. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chen C, Birshtein BK. Virtually identical enhancers containing a segment of homology to murine 3’IgH-E(hs1,2) lie downstream of human Ig C alpha 1 and C alpha 2 genes. J Immunol 1997 ; 159 : 1310–1318. [PubMed] [Google Scholar]
- D’addabbo P, Scascitelli M, Giambra V, et al. Position and sequence conservation in Amniota of polymorphic enhancer HS1,2 within the palindrome of IgH 3’ regulatory region. BMC Evol Biol 2011; 11 : 71. [CrossRef] [PubMed] [Google Scholar]
- Magor BG, Ross DA, Pilström L, et al. Transcriptional enhancers and the evolution of the IgH locus. Immunol Today 1999 ; 20 : 13–17. [CrossRef] [PubMed] [Google Scholar]
- Rouaud P, Vincent-Fabert C, Fiancette R, et al. Enhancers located in heavy chain regulatory region (hs3a, hs1,2, hs3b and hs4) are dispensable for diversity of VDJ recombination. J Biol Chem 2012 ; 287 : 8356–8360. [CrossRef] [PubMed] [Google Scholar]
- Medvedovic J, Ebert A, Tagoh H, et al. Flexible long-range loops in the VH gene region of the IgH locus that likely facilitate the generation of a diverse antibody repertoire. Immunity 2013 ; 39 : 229–244. [CrossRef] [PubMed] [Google Scholar]
- Rouaud P, Vincent-Fabert C, Saintamand A, et al. The IgH 3’ regulatory region controls AID-induced somatic hypermutation in germinal centre B-cells in mice. J Exp Med 2013 ; 210 : 1501–1507. [CrossRef] [PubMed] [Google Scholar]
- Saintamand A, Vincent-Fabert C, Garot A, et al. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy chain 3’ regulatory region. Nat Commun 2016 ; 7 : 10730. [CrossRef] [PubMed] [Google Scholar]
- Le Noir S, Boyer F, Lecardeur S, et al. Functional anatomy of the immunoglobulin heavy chain 3’ super-enhancer needs not only core enhancer elements but also their unique DNA context. Nucleic Acids Res 2017 ; 45 : 5829–5837. [CrossRef] [PubMed] [Google Scholar]
- Vincent-Fabert C, Fiancette R, Pinaud E, et al. Genomic deletion of the whole IgH 3’ regulatory region (hs3a, hs1,2, hs3b, hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood 2010 ; 116 : 1895–1898. [Google Scholar]
- Saintamand A, Rouaud P, Saad F, et al. Elucidation of IgH 3’ region regulatory role during class switch recombination via germline deletion. Nat Commun 2015 ; 6 : 7084. [CrossRef] [PubMed] [Google Scholar]
- Saintamand A, Rouaud P, Garot A, et al. The IgH 3’ regulatory region governs µ chain transcription in mature B lymphocytes and the B cell fate. Oncotarget 2015 ; 6 : 4845–4852. [CrossRef] [PubMed] [Google Scholar]
- Saintamand A, Vincent-Fabert C, Marquet M, et al. Eµ and 3’RR IgH enhancers show hierarchic unilateral dependence in mature B-cells. Sci Rep 2017 ; 7 : 442. [CrossRef] [PubMed] [Google Scholar]
- Pasqualucci L, Dalla-Favera R. The genetic landscape of diffuse large B-cell lymphoma. Semin Hematol 2015 ; 52 : 67–76. [CrossRef] [PubMed] [Google Scholar]
- Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Ann Rev Pathol 2013 ; 8 : 79–103. [CrossRef] [Google Scholar]
- Gisselbrecht S. Oncogènes et leucémies : historique et perspectives. Med Sci (Paris) 2003 ; 19 : 201–210. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
- Seifert M, Scholtysik R, Küppers R. Origin and pathogenesis of B cell lymphomas. Methods Mol Biol 2013 ; 971 : 1–25. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, McCord RP, Ho YJ, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012 ; 148 : 908–921. [CrossRef] [PubMed] [Google Scholar]
- Nikiforova MN, Stringer JR, Blough R, et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 2000 ; 290 : 138–141. [Google Scholar]
- Roix JJ, McQueen PG, Munson PJ, et al. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 2003 ; 34 : 287–291. [Google Scholar]
- Sklyar I, Iarovaia OV, Gavrilov AA, et al. Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation. J Cell Biochem 2016 ; 117 : 1506–1510. [CrossRef] [PubMed] [Google Scholar]
- Allinne J, Pichugin A, Iarovaia O, et al. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood 2014 ; 123 : 2044–2053. [Google Scholar]
- Brys A, Maizels N. LR1 regulates c-myc transcription in B cell lymphomas. Pro Natl Acad Sci USA 1994 ; 91 : 4915–4919. [CrossRef] [Google Scholar]
- Ghazzaui N, Saintamand A, Issaoui A, et al. The IgH 3’ regulatory region and c-myc induced B-cell lymphomagenesis. Oncotarget 2017 ; 8 : 7059–7067. [CrossRef] [PubMed] [Google Scholar]
- Truffinet V, Pinaud E, Cogné N, et al. The 3’ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J Immunol 2007 ; 179 : 6033–6042. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Boxer LM. Regulatory elements in the immunoglobulin heavy chain gene 3’-enhancers induce c-myc deregulation and lymphomagenesis in murine B cells. J Biol Chem 2005 ; 280 : 12766–12773. [CrossRef] [PubMed] [Google Scholar]
- Park SS, Kim JS, Tessarollo L, et al. Insertion of c-Myc into IgH induces B-cell and plasma-cell neoplasms in mice. Cancer Res 2005 ; 65 : 1306–1315. [Google Scholar]
- Rosean TR, Holman CJ, Tompkins VS, et al. KSHV-encoded vIL6 collaborates with deregulated c-MYC to drive plasmablastic neoplasm in mice. Blood Cancer J 2016 ; 6 : e398. [CrossRef] [PubMed] [Google Scholar]
- Cheung WC, Kim JS, Linden M, et al. Novel targeted deregulation of c-myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. J Clin Invest 2004 ; 113 : 1763–1773. [CrossRef] [PubMed] [Google Scholar]
- Rouaud P, Fiancette R, Vincent-Fabert C, et al. Mantle cell lymphoma-like lymphomas in c-myc-3’RR/p53+/- mice and c-myc-3’RR/Cdk4R24C mice: differential oncogenic mechanisms but similar cellular origin. Oncotarget 2012 ; 3 : 586–593. [CrossRef] [PubMed] [Google Scholar]
- Amin R, Marfak A, Pangault C, et al. The class-specific BCR tonic signal modulates lymphomagenesis in a c-myc deregulation transgenic model. Oncotarget 2014 ; 15 : 8995–9006. [Google Scholar]
- Gostissa M, Yan CT, Bianco JM, et al. Long-range oncogenic activation of IgH-c-myc translocations by the IgH 3’ regulatory region. Nature 2009 ; 462 : 803–807. [CrossRef] [PubMed] [Google Scholar]
- Duan H, Heckman CA, Boxer LM. The immunoglobulin heavy-chain gene γ’ enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells. Oncogene 2007 ; 26 : 2635–2641. [Google Scholar]
- Pyndiah S, Sakamuro D. Un trio de choc pour pallier la chimiorésistance des cancers : c-MYC, PARP1, BIN1. Med Sci (Paris) 2013 ; 29 : 133–135. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Montagne R, Furlan A, Kherrouche Z, et al. Le récepteur Met fête ses 30 ans. Med Sci (Paris) 2014 ; 30 : 864–873. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Richardson PG, Mitsiades CS, Laubach JP, et al. Preclinical data and early clinical experience supporting the use of histone deacetylase inhibitors in multiple myeloma. Leuk Res 2013 ; 37 : 829–837. [CrossRef] [PubMed] [Google Scholar]
- Morschhauser F, Terriou L, Coiffier B, et al. Phase 1 study of the oral histone deacetylase inhibitor abexinostat in patients with Hodgkin lymphoma, non-Hodgkin lymphoma, or chronic lymphocytic leukaemia. Invest New Drugs 2015 ; 33 : 423–431. [CrossRef] [PubMed] [Google Scholar]
- Le Umlauf D. génome intime… et en trois dimensions. Med Sci (Paris) 2015 ; 31 : 304–311. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.