Free Access
Issue
Med Sci (Paris)
Volume 33, Number 6-7, Juin-Juillet 2017
Page(s) 653 - 663
Section Repères
DOI https://doi.org/10.1051/medsci/20173306024
Published online 19 July 2017
  1. Hammar JA. The new views at the morphology of the thymus gland and their bearing on the problem of the function of the thymus. Endocrinology 1921 ; 5 : 543–573. [CrossRef] [Google Scholar]
  2. Miller JF. Immunological function of the thymus. The Lancet 1961; II : 748–749. [CrossRef] [Google Scholar]
  3. Miller JF. The thymus and the development of immunologic responsiveness. Science 1964 ; 144 : 1544–1551. [CrossRef] [PubMed] [Google Scholar]
  4. Medawar PB. Discussion after Miller JFAP and Osoba D. Role of the thymus in the origin of immunological competence. In: Wolstenholme GEW, Knight J (eds) The Immunologically Competent Cell: Its Nature and Origin (vol. 16), London : Ciba Foundation Study Group, 1963. [Google Scholar]
  5. Greaves MF, Roitt IM, Rose ME. Effect of bursectomy and thymectomy on the responses of chicken peripheral blood lymphocytes to phytohaemagglutinin. Nature 1969 ; 220 : 293–295. [CrossRef] [Google Scholar]
  6. Good RA, MacLean LD, Varco RL, Zak SJ. Thymic tumor and acquired agammaglobulinemia : a clinical and experimental study of the immune response. Surgery 1956 ; 40 : 1010–1017. [PubMed] [Google Scholar]
  7. Mitchison NA. The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular cooperation. Eur J Immunol 1971 ; 1 : 18–27. [Google Scholar]
  8. Osoba D, Miller JF. Evidence for a humoral factor responsible for the maturation of immunological faculty. Nature 1963 ; 199 : 653–654. [CrossRef] [PubMed] [Google Scholar]
  9. Guillemin R, Cohn M, Melnechuk T (eds) Neural Modulation of Immunity. New York : Raven Press, 1985. [Google Scholar]
  10. Geenen V, Legros JJ, Franchimont P, et al. The neuroendocrine thymus: coexistence of oxytocin and neurophysin in the human thymus. Science 1986 ; 232 : 508–511. [CrossRef] [PubMed] [Google Scholar]
  11. Geenen V, Defresne MP, Robert F, et al. The neurohormonal thymic microenvironment: immunocytochemical evidence that thymic nurse cells are neuroendocrine cells. Neuroendocrinology 1988 ; 47 : 365–368. [CrossRef] [PubMed] [Google Scholar]
  12. Martens H, Kecha O, Charlet-Renard C, et al. Neurohypophysial peptides activate phosphorylation of focal adhesion kinases in immature thymocytes. Neuroendocrinology 1998 ; 67 : 282–289. [CrossRef] [PubMed] [Google Scholar]
  13. Hansenne I, Rasier G, Charlet-Renard C, et al. Neurohypophysial receptor gene expression by thymic T cell subsets and thymic T cell lymphoma cell lines. Clin Dev Immunol 2004 ; 11 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  14. Ehrlich P. The Croonian lecture: on immunity. Proc Soc Lond Biol 1900 ; 66 : 424. [CrossRef] [Google Scholar]
  15. Burnet FM, Mackay IR. Lymphoepithelial structures and autoimmune disease. The Lancet 1962 ; 2 : 1030–1033. [CrossRef] [Google Scholar]
  16. Tonegawa S. Reiteration frequency of immunoglobulin light chain genes: further evidence for somatic generation of antibody diversity. Proc Natl Acad Sci USA 1976 ; 73 : 203–207. [CrossRef] [Google Scholar]
  17. Malissen M, Minard K, Mjolsness S, et al. Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the beta polypeptide. Cell 1984 ; 37 : 1101–1110. [CrossRef] [PubMed] [Google Scholar]
  18. Toyonaga B, Yanagi Y, Suciu-Foca N, et al. Rearrangements of T-cell receptor gene YT35 in human DNA from thymic leukaemia T-cell lines and functional T-cell clones. Nature 1984 ; 311 : 385–387. [CrossRef] [PubMed] [Google Scholar]
  19. Davis MM, Chien YH, Gascoigne NR, Hedrick SM. A murine T cell receptor gene complex: isolation, structure and rearrangement. Immunol Rev 1984 ; 81 : 235–258. [CrossRef] [PubMed] [Google Scholar]
  20. Ohki H, Martin C, Corbel C, et al. Tolerance induced by thymic epithelial grafts in birds. Science 1987 ; 237 : 1032–1035. [CrossRef] [PubMed] [Google Scholar]
  21. Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987 ; 49 : 273–280. [CrossRef] [PubMed] [Google Scholar]
  22. MacDonald HR, Schneider R, Lees RK, et al. T-cell receptor Vβ use predict reactivity and tolerance to Mlsa-encoded antigens. Nature 1988 ; 322 : 40–45. [CrossRef] [Google Scholar]
  23. Kisielow P, Blüthmann H, Staerz UD, et al. Tolerance in T-cell receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988 ; 333 : 742–746. [CrossRef] [PubMed] [Google Scholar]
  24. Wiemann M, Ehret G. Subcellular characterization of immunoreactive oxytocin within thymic epithelial cells of the male mouse. Cell Tiss Res 1993 ; 273 : 573–575. [CrossRef] [Google Scholar]
  25. Funder JW. Paracrine, cryptocrine, acrocrine. Mol Cell Endocrinol 1990 ; 70 : C21–C24. [CrossRef] [PubMed] [Google Scholar]
  26. Rammensee HG, Falk K, Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 1993 ; 11 : 213–244. [CrossRef] [PubMed] [Google Scholar]
  27. Hashimoto-Tane A, Sakuma M, Ike H, et al. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med 2016 ; 213 : 1609–1625. [CrossRef] [PubMed] [Google Scholar]
  28. Ericsson A, Geenen V, Robert F, et al. Expression of preprotachykinin A and neuropeptide Y messenger RNA in the thymus. Mol Endocrinol 1990 ; 4 : 1211–1218. [CrossRef] [PubMed] [Google Scholar]
  29. Martens H, Goxe B, Geenen V. The thymic repertoire of neuroendocrine self-peptides: physiological implications in T-cell life and death. Immunol Today 1996 ; 17 : 312–317. [CrossRef] [PubMed] [Google Scholar]
  30. Geenen V, Lefèbvre PJ. The intrathymic expression of insulin-related genes: implications for pathophysiology and prevention of type 1 diabetes. Diabetes Metab Rev 1998 ; 14 : 95–103. [CrossRef] [PubMed] [Google Scholar]
  31. Vanneste Y, Ntodou-Thome A, Vandersmissen E, et al. Identification of neurotensin-related peptides in human thymic epithelial cell membranes and relationship with major histocompatibility complex class I molecules. J Neuroimmunol 1997 ; 76 : 161–166. [CrossRef] [PubMed] [Google Scholar]
  32. Geenen V, Brilot F, Hansenne H, et al. The central role of the thymus in the development of self-tolerance and autoimmunity in the neuroendocrine system. In : Geenen V, Chrousos GP, eds. Immunoendocrinology in Health and Disease. New York : Marcel Dekker, 2004 : 337–355. [Google Scholar]
  33. Geenen V. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Ann NY Acad Sci 2012 ; 1261 : 42–48. [CrossRef] [Google Scholar]
  34. Geenen V, Bodart G, Henry S, et al. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosc 2013 ; 7 : e187. [CrossRef] [Google Scholar]
  35. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001 ; 2 : 1032–1039. [CrossRef] [PubMed] [Google Scholar]
  36. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006 ; 24 : 571–606. [CrossRef] [PubMed] [Google Scholar]
  37. Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J Immunol 1972 ; 108 : 586–590. [PubMed] [Google Scholar]
  38. Sakagushi S, Sakagushi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chain (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995 ; 155 : 1151–1164. [PubMed] [Google Scholar]
  39. Moulin AM. Le dernier langage de la medicine – Histoire de l’immunologie de Pasteur au SIDA, Paris : Presses Universitaires, 1991. [Google Scholar]
  40. Kecha-Kamoun O, Achour I, Martens H, et al. Thymic expression of insulin-related genes in an animal model of autoimmune type 1 diabetes. Diabetes Metab Rev 2001 ; 17 : 146–152. [CrossRef] [Google Scholar]
  41. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002 ; 298 : 1395–1401. [CrossRef] [PubMed] [Google Scholar]
  42. Takaba H, Morishita Y, Tomofuji Y, et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 2015 ; 163 : 975–987. [CrossRef] [PubMed] [Google Scholar]
  43. Hansenne I, Renard-Charlet C, Greimers R, Geenen V. Dendritic cell differentiation and immune tolerance to insulin-related peptides in Igf2-deficient mice. J Immunol 2006 ; 176 : 4651–4657. [CrossRef] [PubMed] [Google Scholar]
  44. Brilot F, Chehadeh W, Charlet-Renard C, et al. Persistent infection of human thymic epithelial cells by coxsackievirus B4. J Virol 2002 ; 76 : 5260–5265. [CrossRef] [PubMed] [Google Scholar]
  45. Jaïdane H, Caloone D, Lobert PE, et al. Persistent infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor. J Virol 201; 86 : 11151–11162. [CrossRef] [PubMed] [Google Scholar]
  46. Paschke R, Geenen V. Messenger RNA expression for a TSH receptor variant in the thymus of a two-year old child. J Mol Med 1995 ; 73 : 577–580. [CrossRef] [PubMed] [Google Scholar]
  47. Murakami M, Hosoi Y, Negishi T, et al. (1996). Thymic hyperplasia in patients with Graves’ disease. Identification of thyrotropin receptors in human thymus. Clin Invest 1996; 98 : 2228–2234. [CrossRef] [Google Scholar]
  48. Geenen V, Mottet M, Dardenne O, et al. Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes. Curr Opin Pharmacol 2010 ; 10 : 461–472. [CrossRef] [PubMed] [Google Scholar]
  49. Bajoghli B, Guo P, Aghaallaei N, et al. A thymus candidate in lampreys. Nature 2011 ; 470 : 90–94. [Google Scholar]
  50. Lopes N, Ferrier P, Irla M. Induction de la tolérance centrale dans le thymus par le facteur de transcription Aire. Med Sci (Paris) 2015 ; 31 : 742–747. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Dragin N, Le Panse R, Berrih-Aknin S. Prédisposition aux pathologies auto-immmunes : les hommes ne manquent pas « d’Aire ». Med Sci (Paris) 2017 ; 33 : 169–175. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Tauber AI. The immune self: theory or metaphor ?. Immunol Today 1994 ; 15 : 134–136. [CrossRef] [PubMed] [Google Scholar]
  53. Silverstein AM. A history of immunology, 2nd edition. London : Academic Press, 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.