Free Access
Med Sci (Paris)
Volume 33, Number 5, Mai 2017
Page(s) 528 - 533
Section M/S Revues
Published online 14 June 2017
  1. Rothberg MB, Haessler SD. Complications of seasonal and pandemic influenza. Crit Care Med 2010 ; 38 : e91–e97. [CrossRef] [PubMed] [Google Scholar]
  2. Brundage JF. Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness. Lancet Infect Dis 2006 ; 6 : 303–312. [CrossRef] [PubMed] [Google Scholar]
  3. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J Infect Dis 2008 ; 198 : 962–970. [CrossRef] [PubMed] [Google Scholar]
  4. Mccullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Micro 2014 ; 12 : 252–262. [CrossRef] [Google Scholar]
  5. Hayden FG, de Jong MD. Emerging influenza antiviral resistance threats. J Infect Dis 2011 ; 203 : 6–10. [CrossRef] [PubMed] [Google Scholar]
  6. Davidson S, Mc Cabe TM, Crotta S, et al. IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment. EMBO Mol Med 2016 ; 8 : 1099–1112. [CrossRef] [PubMed] [Google Scholar]
  7. Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther; 9 : 807–822. [Google Scholar]
  8. Campigotto A, Mubareka S. Influenza-associated bacterial pneumonia; managing and controlling infection on two fronts. Expert Rev Anti Infect Ther 2015 ; 13 : 55–68. [CrossRef] [PubMed] [Google Scholar]
  9. Brun-Buisson C, Richard J-CM, Mercat A, et al. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med 2011 ; 183 : 1200–1206. [CrossRef] [PubMed] [Google Scholar]
  10. Oldstone MBA, Rosen H. Cytokine storm plays a direct role in the morbidity and mortality from influenza virus infection and is chemically treatable with a single sphingosine-1-phosphate agonist molecule. Curr Top Microbiol Immunol 2014 ; 378 : 129–147. [PubMed] [Google Scholar]
  11. Sugiyama MG, Armstrong SM, Wang C, et al. The Tie2-agonist vasculotide rescues mice from influenza virus infection. Sci Rep 2015 ; 5 : 11030. [CrossRef] [PubMed] [Google Scholar]
  12. Li L, Chong HC, Ng SY, et al. Angiopoietin-like 4 increases pulmonary tissue leakiness and damage during influenza pneumonia. Cell Rep 2015 ; 10 : 654–663. [PubMed] [Google Scholar]
  13. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011 ; 12 : 1045–1054. [CrossRef] [PubMed] [Google Scholar]
  14. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011 ; 12 : 383–390. [CrossRef] [PubMed] [Google Scholar]
  15. Paget C, Ivanov S, Fontaine J, et al. Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J Biol Chem 2012 ; 287 : 8816–8829. [CrossRef] [PubMed] [Google Scholar]
  16. Braza F, Dirou S, Forest V, et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells 2016 ; 34 : 1836–1845. [CrossRef] [PubMed] [Google Scholar]
  17. Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009 ; 302 : 2323–2329. [CrossRef] [PubMed] [Google Scholar]
  18. Noah MA, Peek GJ, Finney SJ, et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011 ; 306 : 1659. [CrossRef] [PubMed] [Google Scholar]
  19. Roquilly A, Marret E, Abraham E, Asehnoune K. Pneumonia prevention to decrease mortality in intensive care unit: A systematic review and meta-analysis. Clin Infect Dis 2014 ; 60 : 64–75. [Google Scholar]
  20. Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. J Immunol 2013 ; 191 : 2047–2052. [PubMed] [Google Scholar]
  21. Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011 ; 32 : 328–334. [PubMed] [Google Scholar]
  22. Mcnamee LA, Harmsen AG. Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect Immun 2006 ; 74 : 6707–6721. [CrossRef] [PubMed] [Google Scholar]
  23. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat Med 2008 ; 14 : 558–564. [CrossRef] [PubMed] [Google Scholar]
  24. Shahangian A, Chow EK, Tian X, et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 2009 ; 119 : 1910–1920. [PubMed] [Google Scholar]
  25. Barthelemy A, Ivanov S, Fontaine J, et al. Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of invariant natural killer T cells during invasive pneumococcal superinfection. Mucosal Immunol 2016 ; 4 : 1–10. [EDP Sciences] [Google Scholar]
  26. Kudva A, Scheller EV, Robinson KM, et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol 2011 ; 186 : 1666–1674. [PubMed] [Google Scholar]
  27. Cao J, Wang D, Xu F, et al. Activation of IL-27 signalling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol Med 2014 ; 6 : 120–140. [CrossRef] [PubMed] [Google Scholar]
  28. Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: The case of the Pneumococcus. Plos Pathog. 2014 ; 10 : e1004300–e1004311. [PubMed] [Google Scholar]
  29. Li W, Moltedo B, Moran TM. Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of T cells. J Virol 2012 ; 86 : 12304–12312. [CrossRef] [PubMed] [Google Scholar]
  30. Van der Sluijs KF, Nijhuis M, Levels JHM, et al. Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 2006 ; 193 : 214–222. [CrossRef] [PubMed] [Google Scholar]
  31. Rynda-Apple A, Robinson KM, Alcorn JF. Influenza and bacterial superinfection: Illuminating the immunologic mechanisms of disease. Infect Immun 2015 ; 83 : 3764–3770. [CrossRef] [PubMed] [Google Scholar]
  32. Broquet A, Roquilly A, Jacqueline C, et al. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model. Crit Care Med 2014 ; 42 : e441–e450. [CrossRef] [PubMed] [Google Scholar]
  33. Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 2009 ; 180 : 640–648. [CrossRef] [PubMed] [Google Scholar]
  34. Didierlaurent A, Goulding J, Patel S, et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008 ; 205 : 323–329. [CrossRef] [PubMed] [Google Scholar]
  35. Porte R, Fougeron D, Muñoz-Wolf N, et al. A Toll-like receptor 5 agonist improves the efficacy of antibiotics in treatment of primary and influenza virus-associated pneumococcal mouse infections. Antimicrob Agents Chemother 2015 ; 59 : 6064–6072. [CrossRef] [PubMed] [Google Scholar]
  36. Reppe K, Radünzel P, Dietert K, et al. Pulmonary immunostimulation with MALP-2 in influenza virus-infected mice increases survival after pneumococcal superinfection. Infect Immun 2015 ; 83 : 4617–4629. [CrossRef] [PubMed] [Google Scholar]
  37. Barthelemy A, Ivanov S, Hassane M, et al. Exogenous activation of invariant natural killer T cells by α-galactosylceramide reduces pneumococcal outgrowth and dissemination postinfluenza. MBio 2016 ; 7 : 6. [Google Scholar]
  38. Zylberman P. Comme en 1918 ! La grippe « espagnole » et nous. Med Sci (Paris) 2006 ; 22 : 767–770. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Lina B. Potentiel pandémique des virus influenza aviaires circulant actuellement et ayant des caractéristiques proches du virus de 1918. Med Sci (Paris) 2014 ; 30 : 851–853. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Coignard-Biehler H, Lortholary O. Cabale contre la vaccination anti-H1N1: est-elle justifiée ? Med Sci (Paris) 2009 ; 25 : 967–970. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.