Free Access
Issue
Med Sci (Paris)
Volume 33, Number 5, Mai 2017
Page(s) 519 - 527
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173305016
Published online 14 June 2017
  1. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999 ; 399 : 541–548. [CrossRef] [PubMed] [Google Scholar]
  2. Rotem O, Pasternak Z, Jurkevitch E. Bdellovibrio and Like Organisms. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014 : 3–17. [CrossRef] [Google Scholar]
  3. Gallet R, Tully T. M.K.E. Evans. Ecological conditions affect evolutionary trajectory in a predator-prey system. Evolution 2009 ; 63 : 641–651. [CrossRef] [PubMed] [Google Scholar]
  4. Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 2004 ; 6 : 8–12. [Google Scholar]
  5. Williams HN, Lymperopoulou DS, Athar R, et al. Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality. ISME J 2016 ; 10 : 491–499. [CrossRef] [PubMed] [Google Scholar]
  6. Dolinšek J, Lagkouvardos I, Wanek W, et al. Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-Like putative predator of Nitrospira spp. Appl Environm Microbiol 2013 ; 79 : 2027–2037. [CrossRef] [Google Scholar]
  7. Chen H, Young S, Berhane T-K, Williams HN. Predatory Bacteriovorax communities ordered by various prey species. PLoS ONE 2012 ; 7 : e34174. [PubMed] [Google Scholar]
  8. Jacquet S, Domaizon I, Personnic S, et al. Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biol 2005 ; 50 : 627–645. [CrossRef] [Google Scholar]
  9. Personnic S, Domaizon I, Dorigo U, et al. Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia 2009 ; 627 : 99–116. [Google Scholar]
  10. Kandel PP, Pasternak Z, van Rijn J, et al. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol 2014 ; 89 : 149–161. [PubMed] [Google Scholar]
  11. Zheng G, Wang C, Williams HN, Pineiro SA. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater Bacteriovorax. Environ Microbiol 2008 ; 10 : 2515–2526. [CrossRef] [PubMed] [Google Scholar]
  12. Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol 2006 ; 8 : 1667–1673. [CrossRef] [PubMed] [Google Scholar]
  13. Miki T, Jacquet S. Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquatic Microbial Ecology 2008 ; 51 : 195–208. [CrossRef] [Google Scholar]
  14. Rotem O, Pasternak Z, Shimoni E, et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A 2015 ; 112 : E6028–E6E37. [CrossRef] [PubMed] [Google Scholar]
  15. Schwudke D, Linscheid M, Strauch E, et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral Lipid A containing α-D-mannoses that replace phosphate residues. J Biol Chem 2003 ; 278 : 27502–27512. [PubMed] [Google Scholar]
  16. Kaneshiro ES, Hunt SM, Watanabe Y. Bacteriovorax stolpii proliferation and predation without sphingophosphonolipids. Biochem Biophys Res Commun 2008 ; 367 : 21–25. [PubMed] [Google Scholar]
  17. Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV Pili. J Bacteriol 2007 ; 189 : 4850–4859. [PubMed] [Google Scholar]
  18. Karunker I, Rotem O, Dori-Bachash M, et al. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS ONE 2013 ; 8 : e61850. [PubMed] [Google Scholar]
  19. Dori-Bachash M, Dassa B, Pietrokovski S, Jurkevitch E. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus. Appl Environ Microbiol 2008 ; 74 : 7152–7162. [CrossRef] [PubMed] [Google Scholar]
  20. Lerner TR, Lovering AL, Bui NK, et al. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog 2012 ; 8 : e1002524. [PubMed] [Google Scholar]
  21. Lambert C, Cadby IT, Till R, et al. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun 2015 ; 6 : 8884. [PubMed] [Google Scholar]
  22. Hol FJ, Rotem O, Jurkevitch E, et al. Bacterial predator–prey dynamics in microscale patchy landscapes. Proc Biol Sci 2016; 283. pii: 20152154. [Google Scholar]
  23. Pasternak Z, Njagi M, Shani Y, et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J 2014 ; 8 : 625–635. [CrossRef] [PubMed] [Google Scholar]
  24. Pasternak Z, Pietrokovski S, Rotem O, et al. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 2013 ; 7 : 756–769. [CrossRef] [PubMed] [Google Scholar]
  25. Shilo M, Bruff B. Lysis of Gram negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol 1965 ; 40 : 317–328. [CrossRef] [PubMed] [Google Scholar]
  26. Roschanski N, Klages S, Reinhardt R, et al. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol 2011 ; 193 : 1745–1756. [PubMed] [Google Scholar]
  27. Capeness MJ, Lambert C, Lovering AL, et al. Activity of Bdellovibrio hit locus proteins, Bd0108 and Bd0109, links type IVa pilus extrusion/retraction status to prey-independent growth signalling. PLoS ONE 2013 ; 8 : e79759. [PubMed] [Google Scholar]
  28. Milner DS, Till R, Cadby I, et al. Ras GTPase-Like protein MglA, a controller of bacterial social-motility in myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet 2014 ; 10 : e1004253. [CrossRef] [PubMed] [Google Scholar]
  29. Hobley L, Fung RKY, Lambert C, et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog 2012 ; 8 : e1002493. [PubMed] [Google Scholar]
  30. Rotem O, Nesper J, Borovok I, et al. An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol 2016 ; 198 : 127–137. [PubMed] [Google Scholar]
  31. Cao H, He S, Lu L, et al. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Antonie van Leeuwenhoek 2014 ; 105 : 423–430. [CrossRef] [PubMed] [Google Scholar]
  32. Feng S, Tan CH, Cohen Y, Rice SA. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ Microbiol 2016 ; 18 : 3923–3931. [CrossRef] [PubMed] [Google Scholar]
  33. Dashiff A, Kadouri DE. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol 2011 ; 26 : 19–34. [CrossRef] [PubMed] [Google Scholar]
  34. Van Essche M, Quirynen M, Sliepen I, et al. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol 2011 ; 26 : 52–61. [CrossRef] [PubMed] [Google Scholar]
  35. Monnappa AK, Dwidar M, Seo JK, et al. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep 2014 ; 4 : 3811. [CrossRef] [PubMed] [Google Scholar]
  36. Sockett ER, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2004 ; 2 : 669–675. [PubMed] [Google Scholar]
  37. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. PLoS ONE 2016 ; 11 : e0161242. [PubMed] [Google Scholar]
  38. Romanowski EG, Stella NA, Brothers KM, et al. Predatory bacteria are nontoxic to the rabbit ocular surface. Sci Rep 2016 ; 6 : 30987. [CrossRef] [PubMed] [Google Scholar]
  39. Shatzkes K, Singleton E, Tang C, et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio 2016; 7. pii: e01847–16. [PubMed] [Google Scholar]
  40. Willis AR, Moore C, Mazon-Moya M, et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol 2016 ; 26 : 3343–3351. [CrossRef] [PubMed] [Google Scholar]
  41. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol 2016 ; 7 : 455. [CrossRef] [PubMed] [Google Scholar]
  42. Kadouri DE, To K, Shanks RM, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One 2013 ; 8 : e63397. [PubMed] [Google Scholar]
  43. Kadouri D, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 2005 ; 71 : 4044–4051. [CrossRef] [PubMed] [Google Scholar]
  44. Kim E-H, Dwidar M, Mitchell RJ, Kwon Y-N. Assessing the effects of bacterial predation on membrane biofouling. Water Research 2013 ; 47 : 6024–6032. [CrossRef] [PubMed] [Google Scholar]
  45. Zuo N, He J, Ma X, et al. Phosphorus removal performance and population structure of phosphorus-accumulating organisms in HA-A/A-MCO sludge reduction process. Bioengineered 2016 : 1–7. [PubMed] [Google Scholar]
  46. Framatico P.M. WRC. Ability of Bdellovibrio bacteriovorus 109J to lyse Gram-negative food-borne pathogenic and spoilage bacteria. J Food Protect 1995 ; 58 : 160–164. [CrossRef] [Google Scholar]
  47. Uematsu T. Ecology of Bdellovibrio parasitic to rice bacterial leaf blight pathogen, Xanthomonas oryzae. Rev Plant Protect Res 1980 ; 13 : 12–26. [Google Scholar]
  48. Jurkevitch E, Minz D, Ramati B. G B. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 2000 ; 66 : 2365–2371. [CrossRef] [PubMed] [Google Scholar]
  49. Li H, Chen C, Sun Q, et al. Bdellovibrio and Like Organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol 2014 ; 80 : 6346–6354. [CrossRef] [PubMed] [Google Scholar]
  50. Atterbury RJ, Hobley L, Till R, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 2011 ; 77 : 5794–5803. [CrossRef] [PubMed] [Google Scholar]
  51. Martínez V, Herencias C, Jurkevitch E, Prieto MA. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: The case of the polyhydroxyalkanoates. Sci Rep 2016 ; 6 : 24381. [CrossRef] [PubMed] [Google Scholar]
  52. Koval SF, Hynes SH, Flannagan RS, et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 2013 ; 63 : 146–151. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.