Free Access
Issue
Med Sci (Paris)
Volume 33, Number 5, Mai 2017
Page(s) 474 - 477
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20173305005
Published online 14 June 2017
  1. Hassanin A. Évolution des séquences « signal de recombinaison » dans le locus de la région variable de la chaîne lourde des immunoglobulines. Med Sci (Paris) 2001 ; 17 : 1168–1175. [EDP Sciences] [Google Scholar]
  2. Schatz DG, Swanson PC V(D)J recombination: mechanisms of initiation. Annu Rev Genet 2011 ; 45 : 167–202. [CrossRef] [PubMed] [Google Scholar]
  3. Helmink BA, Sleckman BP The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 2012 ; 30 : 175–202. [PubMed] [Google Scholar]
  4. Deriano L, Roth DB Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 2013 ; 47 : 433–455. [CrossRef] [PubMed] [Google Scholar]
  5. Revy P, de Villartay JP Cernunnos, un nouveau facteur de la réparation de l’ADN essentiel pour le système immunitaire. Med Sci (Paris) 2006 ; 22 : 569–570. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Revy P, Buck D, le Deist F, de Villartay JP The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol 2005 ; 87 : 237–295. [CrossRef] [PubMed] [Google Scholar]
  7. Vera G, Rivera-Munoz P, Abramowski V, et al. Cernunnos deficiency reduces thymocyte lifespan and alters the T cell repertoire in mice and humans. Mol Cell Biol 2012 ; 33 : 701–711. [CrossRef] [PubMed] [Google Scholar]
  8. Li G, Alt FW, Cheng HL, et al. Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination. Mol Cell 2008 ; 31 : 631–640. [CrossRef] [PubMed] [Google Scholar]
  9. Kumar V, Alt FW, Oksenych V Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair 2014 ; 16 : 11–22. [CrossRef] [PubMed] [Google Scholar]
  10. Lescale C, Deriano L The RAG recombinase: Beyond breaking. Mech Ageing Dev 2016 ; 10.1016/j.mad.2016.11.003 [Google Scholar]
  11. Deriano L, Chaumeil J, Coussens M, et al. The RAG2 C-terminus suppresses genomic instablity and lymphomagenesis. Nature 2011 ; 471 : 119–123. [CrossRef] [PubMed] [Google Scholar]
  12. Lescale C, Abramowski V, Bedora-Faure M, et al. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 2016 ; 7 : 10529. [PubMed] [Google Scholar]
  13. Huang S, Tao X, Yuan S, et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 2016 ; 166 : 102–114. [PubMed] [Google Scholar]
  14. Lescale C, Lenden Hasse H, Blackford AN, et al. Specific roles of XRCC4 paralogs PAXX and XLF during V(D)J recombination. Cell Rep 2016 ; 16 : 2967–2979. [CrossRef] [PubMed] [Google Scholar]
  15. Ochi T, Blackford AN, Coates J, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science 2015 ; 347 : 185–188. [CrossRef] [PubMed] [Google Scholar]
  16. Tremblay JP CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Balmus G, Barros AC, Wijnhoven PW, et al. Synthetic lethality between PAXX and XLF in mammalian development. Genes Dev 2016 ; 30 : 2152–2157. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.