Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 73 - 80
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301012
Published online 25 January 2017
  1. Cezar-Doru R, Oana P, Lacramioara O. Applications of cyclodextrins in medical textiles. J Control Release 2016 ; 224 : 146–157. [CrossRef] [PubMed] [Google Scholar]
  2. Martel B, Weltrowski M, Ruffin D, et al. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton or wool fabrics. J Appl Polym Sci 2002 ; 83 : 1449–14456. [CrossRef] [Google Scholar]
  3. Martel B, Morcellet M, Ruffin D, et al. Finishing of polyester fabrics by cyclodextrins by using polycarboxylic acids as crosslinking agents. J Incl Phenom Macrocycl Chem 2002 ; 44 : 443–446. [CrossRef] [Google Scholar]
  4. Brevet. Dispositif de filtration d’un flux d’air à activité antibactérienne et/ou antivirale et/ou antifongique et procédé de préparation d’un tel dispositif. Brevet : FR 2 984 176 (A1). [Google Scholar]
  5. Martin A, Tabary N, Leclercq L, et al. Multilayered textile coating based on a β-cyclodextrin polyelectrolyte for the controlled release of drugs. Carb Polym 2013 ; 93 : 718–730. [CrossRef] [Google Scholar]
  6. Blanchemain N, Karrout Y, Tabary N, et al. Comparative study of vascular prostheses coated with polycyclodextrins for controlled ciprofloxacin release. Carbohydr Polym 2012 ; 90 : 1695–1703. [CrossRef] [Google Scholar]
  7. Tabary N, Chai F, Blanchemain N, et al. Functionalization of oxidized resorbable cellulose material for the prolonged release of antiseptic agents for periodontological applications. Acta Biomater 2014 ; 10 : 318–329. [CrossRef] [PubMed] [Google Scholar]
  8. Vermet G, Degoutin S, Chai F, et al. Visceral mesh modified with cyclodextrin for the local sustained delivery of ropivacaine. Int J Pharm 2014 ; 476 : 149–159. [CrossRef] [PubMed] [Google Scholar]
  9. Jean-Baptiste E, Blanchemain N, Neut C, et al. Evaluation of the anti-infectious properties of polyester vascular prostheses functionalized with cyclodextrin. J Infect 2014 ; 68 : 116–124. [CrossRef] [PubMed] [Google Scholar]
  10. Jean-Baptiste E, Blanchemain N, Martel B, et al. Safety, healing, and efficacy of vascular prostheses coated with hydroxypropyl--cyclodextrin polymer: experimental in-vitro and animal studies. Eur J Vasc Endovasc Surg 2012 ; 43 : 188–197. [CrossRef] [PubMed] [Google Scholar]
  11. Renaud FNR, Doré J, Mayer HA, et al. Les textiles antibactériens. La Revue Industrielle de l’Écrin 2004 ; 58 : 17–20. [Google Scholar]
  12. Russell A D, Tattawasart U, Maillard JY, et al. Possible link between bacterial resistance and use of antibiotics and biocide. Antimicrob Agents Chemother 1998 ; 42 : 2151–2158. [PubMed] [Google Scholar]
  13. Priyadarsini KI. Photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol 2009 ; 10 : 81–95. [CrossRef] [Google Scholar]
  14. Dahl TA, McGowan WM, Shand A, et al. Photokilling of bacteria by natural curcumine dye. Arch Microbiol 1989 ; 151 : 183–185. [CrossRef] [PubMed] [Google Scholar]
  15. Kerkeni A, Gupta D, Perwuelz A, et al. Chemical grafting of curcumin at polyethylene terephthalate woven fabric surface using a prior surface activation with ultraviolet excimer lamp. J Appl Polym Sci 2011 ; 20 : 1583–1590. [CrossRef] [Google Scholar]
  16. Millette M, Tien CL, Smoragiewicz W, Lacroix M. Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 2007 ; 18 : 878–884. [CrossRef] [Google Scholar]
  17. Arauz LJ, Jozala AF, Mazzola PG. Nisin biotechnological production and application: a review. Trends Food Sci Technol 2009 ; 20 : 146–154. [CrossRef] [Google Scholar]
  18. Guerlava P, Nolf P, Tholozan J.-L. Rapid cooling, moderate heat treatment and nisin addition influence cell homeostasis of Clostridium perfringens type A. Int J Food Microbiol 1998 ; 39 : 195–203. [CrossRef] [PubMed] [Google Scholar]
  19. Kerkeni A, Behary N, Dhulster P, et al. treatment of woven polyester fabrics with respect to nisin adsorption and antibacterial activity. Polymers for biomedical applications. J Appl Polym Sci (special issue) : 2013 ; 129 : 866–873. [CrossRef] [Google Scholar]
  20. Behary N, Kerkeni A, Perwuelz A, et al. Bioactivation of PETwoven fabrics using alginate biopolymer and the bacteriocin nisin. Text Res J 2013 ; 83 : 1120–1129. [CrossRef] [Google Scholar]
  21. Bordes P, Pollet E, Avérous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 2009 ; 34 : 125–155. [CrossRef] [Google Scholar]
  22. Dastjerdi R, Montazer M, Shahsavan S. A review on the application of inorganic nano-structured materials in the modification of textiles: focus of antimicrobial properties. Coll Surf B Biointerf 2010 ; 81 : 32–41. [CrossRef] [Google Scholar]
  23. Murariu M, Doumbia A, Bonnaud L, et al. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromol 2011 ; 12 : 1762–771. [CrossRef] [Google Scholar]
  24. Uruyama H, Kanamori T, Kimura Y. Properties and biodegradability of polymer blends of poly(L-lactide)s with different optical purity of the lactate. Mater Eng 2002 ; 287 : 116–121. [Google Scholar]
  25. Lipinsky ES, Sinclair RG. Is lactic acid a commodity chemical. Chem Eng Prog 1986 ; 82 : 26–32. [Google Scholar]
  26. Vert M, Schwach G, Coudane J. Present and future of PLA polymers. J Macromol Sci Pure Appl Chem 1995 ; 32 : 787–796. [CrossRef] [Google Scholar]
  27. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004 ; 4 : 835–864. [CrossRef] [Google Scholar]
  28. Singh R, Jain A, Panwar S, et al. Antimicrobial activity of some natural dyes. Dyes Pigments 2005 ; 66 : 99–102. [CrossRef] [Google Scholar]
  29. Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 2015 ; 131 : 87–104. [CrossRef] [PubMed] [Google Scholar]
  30. Norouzi M, Boroujeni SM, Omidvarkordshouli N, et al. advances in skin regeneration: application of electrospun scaffolds. Adv Health Mater 2015 ; 4 : 1114–1133. [CrossRef] [Google Scholar]
  31. Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. J Tissue Eng Regen Med 2015 ; 9 : 861–888. [CrossRef] [PubMed] [Google Scholar]
  32. Yu X, Tang X, Gohil SV, et al. Biomaterials for bone regenerative engineering. Adv Health Mater 2015 ; 4 : 1268–1285. [CrossRef] [Google Scholar]
  33. Hu X, Liu S, Zhou G, et al. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014 ; 185 : 12–21. [CrossRef] [PubMed] [Google Scholar]
  34. Ouerghemmi S, Degoutin S, Tabary N, et al. Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. Int J Pharm 2016 ; 513 : 483–495. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.