Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
|
|
---|---|---|
Page(s) | 73 - 80 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173301012 | |
Publié en ligne | 25 janvier 2017 |
- Cezar-Doru R, Oana P, Lacramioara O. Applications of cyclodextrins in medical textiles. J Control Release 2016 ; 224 : 146–157. [CrossRef] [PubMed] [Google Scholar]
- Martel B, Weltrowski M, Ruffin D, et al. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton or wool fabrics. J Appl Polym Sci 2002 ; 83 : 1449–14456. [Google Scholar]
- Martel B, Morcellet M, Ruffin D, et al. Finishing of polyester fabrics by cyclodextrins by using polycarboxylic acids as crosslinking agents. J Incl Phenom Macrocycl Chem 2002 ; 44 : 443–446. [Google Scholar]
- Brevet. Dispositif de filtration d’un flux d’air à activité antibactérienne et/ou antivirale et/ou antifongique et procédé de préparation d’un tel dispositif. Brevet : FR 2 984 176 (A1). [Google Scholar]
- Martin A, Tabary N, Leclercq L, et al. Multilayered textile coating based on a β-cyclodextrin polyelectrolyte for the controlled release of drugs. Carb Polym 2013 ; 93 : 718–730. [CrossRef] [Google Scholar]
- Blanchemain N, Karrout Y, Tabary N, et al. Comparative study of vascular prostheses coated with polycyclodextrins for controlled ciprofloxacin release. Carbohydr Polym 2012 ; 90 : 1695–1703. [Google Scholar]
- Tabary N, Chai F, Blanchemain N, et al. Functionalization of oxidized resorbable cellulose material for the prolonged release of antiseptic agents for periodontological applications. Acta Biomater 2014 ; 10 : 318–329. [CrossRef] [PubMed] [Google Scholar]
- Vermet G, Degoutin S, Chai F, et al. Visceral mesh modified with cyclodextrin for the local sustained delivery of ropivacaine. Int J Pharm 2014 ; 476 : 149–159. [CrossRef] [PubMed] [Google Scholar]
- Jean-Baptiste E, Blanchemain N, Neut C, et al. Evaluation of the anti-infectious properties of polyester vascular prostheses functionalized with cyclodextrin. J Infect 2014 ; 68 : 116–124. [CrossRef] [PubMed] [Google Scholar]
- Jean-Baptiste E, Blanchemain N, Martel B, et al. Safety, healing, and efficacy of vascular prostheses coated with hydroxypropyl--cyclodextrin polymer: experimental in-vitro and animal studies. Eur J Vasc Endovasc Surg 2012 ; 43 : 188–197. [CrossRef] [PubMed] [Google Scholar]
- Renaud FNR, Doré J, Mayer HA, et al. Les textiles antibactériens. La Revue Industrielle de l’Écrin 2004 ; 58 : 17–20. [Google Scholar]
- Russell A D, Tattawasart U, Maillard JY, et al. Possible link between bacterial resistance and use of antibiotics and biocide. Antimicrob Agents Chemother 1998 ; 42 : 2151–2158. [PubMed] [Google Scholar]
- Priyadarsini KI. Photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol 2009 ; 10 : 81–95. [CrossRef] [Google Scholar]
- Dahl TA, McGowan WM, Shand A, et al. Photokilling of bacteria by natural curcumine dye. Arch Microbiol 1989 ; 151 : 183–185. [CrossRef] [PubMed] [Google Scholar]
- Kerkeni A, Gupta D, Perwuelz A, et al. Chemical grafting of curcumin at polyethylene terephthalate woven fabric surface using a prior surface activation with ultraviolet excimer lamp. J Appl Polym Sci 2011 ; 20 : 1583–1590. [Google Scholar]
- Millette M, Tien CL, Smoragiewicz W, Lacroix M. Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 2007 ; 18 : 878–884. [Google Scholar]
- Arauz LJ, Jozala AF, Mazzola PG. Nisin biotechnological production and application: a review. Trends Food Sci Technol 2009 ; 20 : 146–154. [Google Scholar]
- Guerlava P, Nolf P, Tholozan J.-L. Rapid cooling, moderate heat treatment and nisin addition influence cell homeostasis of Clostridium perfringens type A. Int J Food Microbiol 1998 ; 39 : 195–203. [CrossRef] [PubMed] [Google Scholar]
- Kerkeni A, Behary N, Dhulster P, et al. treatment of woven polyester fabrics with respect to nisin adsorption and antibacterial activity. Polymers for biomedical applications. J Appl Polym Sci (special issue) : 2013 ; 129 : 866–873. [CrossRef] [Google Scholar]
- Behary N, Kerkeni A, Perwuelz A, et al. Bioactivation of PETwoven fabrics using alginate biopolymer and the bacteriocin nisin. Text Res J 2013 ; 83 : 1120–1129. [CrossRef] [Google Scholar]
- Bordes P, Pollet E, Avérous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 2009 ; 34 : 125–155. [Google Scholar]
- Dastjerdi R, Montazer M, Shahsavan S. A review on the application of inorganic nano-structured materials in the modification of textiles: focus of antimicrobial properties. Coll Surf B Biointerf 2010 ; 81 : 32–41. [CrossRef] [Google Scholar]
- Murariu M, Doumbia A, Bonnaud L, et al. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromol 2011 ; 12 : 1762–771. [CrossRef] [Google Scholar]
- Uruyama H, Kanamori T, Kimura Y. Properties and biodegradability of polymer blends of poly(L-lactide)s with different optical purity of the lactate. Mater Eng 2002 ; 287 : 116–121. [Google Scholar]
- Lipinsky ES, Sinclair RG. Is lactic acid a commodity chemical. Chem Eng Prog 1986 ; 82 : 26–32. [Google Scholar]
- Vert M, Schwach G, Coudane J. Present and future of PLA polymers. J Macromol Sci Pure Appl Chem 1995 ; 32 : 787–796. [CrossRef] [Google Scholar]
- Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004 ; 4 : 835–864. [PubMed] [Google Scholar]
- Singh R, Jain A, Panwar S, et al. Antimicrobial activity of some natural dyes. Dyes Pigments 2005 ; 66 : 99–102. [CrossRef] [Google Scholar]
- Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 2015 ; 131 : 87–104. [CrossRef] [PubMed] [Google Scholar]
- Norouzi M, Boroujeni SM, Omidvarkordshouli N, et al. advances in skin regeneration: application of electrospun scaffolds. Adv Health Mater 2015 ; 4 : 1114–1133. [CrossRef] [Google Scholar]
- Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. J Tissue Eng Regen Med 2015 ; 9 : 861–888. [CrossRef] [PubMed] [Google Scholar]
- Yu X, Tang X, Gohil SV, et al. Biomaterials for bone regenerative engineering. Adv Health Mater 2015 ; 4 : 1268–1285. [CrossRef] [Google Scholar]
- Hu X, Liu S, Zhou G, et al. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014 ; 185 : 12–21. [CrossRef] [PubMed] [Google Scholar]
- Ouerghemmi S, Degoutin S, Tabary N, et al. Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. Int J Pharm 2016 ; 513 : 483–495. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.