Free Access
Issue
Med Sci (Paris)
Volume 32, Number 10, Octobre 2016
Page(s) 800 - 802
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20163210003
Published online 19 October 2016
  1. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
  2. Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Dev Camb Engl 2015 ; 142 : 1572–1581. [Google Scholar]
  3. Dufresne SS, Frenette J, Dumont NA. Inflammation et régénération musculaire : une arme à double tranchant. Med Sci (Paris) 2016 ; 32 : 591–597. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Sacco A, Mourkioti F, Tran R, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 2010 ; 143 : 1059–1071. [CrossRef] [PubMed] [Google Scholar]
  5. Jiang C, Wen Y, Kuroda K, et al. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech 2014 ; 7 : 997–1004. [CrossRef] [PubMed] [Google Scholar]
  6. Kottlors M, Kirschner J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 2010 ; 340 : 541–548. [CrossRef] [PubMed] [Google Scholar]
  7. Dumont NA, Wang YX, von Maltzahn J, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015 ; 21 : 1455–1463. [CrossRef] [PubMed] [Google Scholar]
  8. Fukada S, Uezumi A, Ikemoto M, et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells Dayt Ohio 2007 ; 25 : 2448–2459. [CrossRef] [Google Scholar]
  9. Cohn RD, Henry MD, Michele DE, et al. Disruption of Dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 2002 ; 110 : 639–648. [CrossRef] [PubMed] [Google Scholar]
  10. Kanagawa M, Yu CC, Ito C, et al. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet 2013 ; 22 : 3003–3015. [CrossRef] [PubMed] [Google Scholar]
  11. Ross J, Benn A, Jonuschies J, et al. Defects in glycosylation impair satellite stem cell function and niche composition in the muscles of the dystrophic largemyd mouse. Stem Cells 2012 ; 30 : 2330–2341. [CrossRef] [PubMed] [Google Scholar]
  12. Dumont NA, Rudnicki MA. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. Npj Regen Med 2016 ; 1 : 16006. [CrossRef] [Google Scholar]
  13. Mayeuf A, Relaix F. La voie Notch : du développement à la régénération du muscle squelettique. Med Sci (Paris) 2011 ; 27 : 521–526. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Vieira NM, Elvers I, Alexander MS, et al. Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 2015 ; 163 : 1204–1213. [CrossRef] [PubMed] [Google Scholar]
  15. Tierney MT, Aydogdu T, Sala D, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 2014 ; 20 : 1182–1186. [CrossRef] [PubMed] [Google Scholar]
  16. Kimura E, Li S, Gregorevic P, et al. Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol Ther 2009 ; 18 : 206–213. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.