Free Access
Issue
Med Sci (Paris)
Volume 32, Number 8-9, Août–Septembre 2016
Page(s) 758 - 767
Section Dossiers techniques
DOI https://doi.org/10.1051/medsci/20163208025
Published online 12 September 2016
  1. Friedmann D, Messick T, Marmorstein R. Crystallization of macromolecules. Curr Protoc Protein Sci 2011 ; 17 : 4 : 1–26. [Google Scholar]
  2. Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 2015 ; 33 : 103–114. [CrossRef] [PubMed] [Google Scholar]
  3. Rupp B. Reviewing biomolecular crystallography proposals: time for a paradigm change. Trends Biochem Sci 2015 ; 40 : 419–421. [CrossRef] [PubMed] [Google Scholar]
  4. Jonic S, Venien-Bryan C. Protein structure determination by electron cryo-microscopy. Curr Opin Pharmacol 2009 ; 9 : 636–642. [CrossRef] [PubMed] [Google Scholar]
  5. Eisenstein M. The field that came in from the cold. Nat Methods 2016 ; 13 : 19–22. [CrossRef] [PubMed] [Google Scholar]
  6. Peckys DB, Korf U, de Jonge N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci Adv 2015 ; 1 : e1500165. [CrossRef] [PubMed] [Google Scholar]
  7. Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988 ; 21 : 129–228. [CrossRef] [PubMed] [Google Scholar]
  8. Frank J. Three-dimensional electron microscopy of macromolecular assemblies. New York : Oxford University Press, 2006. [CrossRef] [Google Scholar]
  9. Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 2016 ; 28 : 171–193. [CrossRef] [PubMed] [Google Scholar]
  10. Gillet R, Felden B. Lost in translation : le déblocage des ribosomes bactériens par le mécanisme de trans-traduction. Med Sci (Paris) 2007 ; 23 : 633–639. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Marzi S, Romby P, Klaholz BP. Quand le fil de l’ARN messager s’entortille et bloque sa traduction…. Med Sci (Paris) 2007 ; 23 : 881–883. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Papillon J, Ménétret JF, Batisse C, et al. L’architecture moléculaire complète de l’AND gyrase révélée par cryo-microscopie électronique. Nouvelles informations sur le mécanisme de surenroulement négatif de l’ADN gyrase Med Sci (Paris) 2014 ; 30 : 1081–1084. [Google Scholar]
  13. Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 2013 ; 10 : 584–590. [CrossRef] [PubMed] [Google Scholar]
  14. Sigworth FJ. A maximum-likelihood approach to single-particle image refinement. J Struct Biol 1998 ; 122 : 328–339. [CrossRef] [PubMed] [Google Scholar]
  15. Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 2012 ; 9 : 853–854. [CrossRef] [PubMed] [Google Scholar]
  16. Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 2003 ; 333 : 721–745. [CrossRef] [PubMed] [Google Scholar]
  17. Amunts A, Brown A, Bai XC, et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014 ; 343 : 1485–1489. [CrossRef] [PubMed] [Google Scholar]
  18. Durr KL, Chen L, Stein RA, et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 2014 ; 158 : 778–792. [CrossRef] [PubMed] [Google Scholar]
  19. Lu P, Bai XC, Ma D, et al. Three-dimensional structure of human gamma-secretase. Nature 2014 ; 512 : 166–170. [CrossRef] [PubMed] [Google Scholar]
  20. Yan Z, Bai XC, Yan C, et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2015 ; 517 : 50–55. [CrossRef] [PubMed] [Google Scholar]
  21. Efremov RG, Leitner A, Aebersold R, et al. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 2015 ; 517 : 39–43. [CrossRef] [PubMed] [Google Scholar]
  22. Zalk R, Clarke OB, des Georges A, et al. Structure of a mammalian ryanodine receptor. Nature 2015 ; 517 : 44–49. [CrossRef] [PubMed] [Google Scholar]
  23. Tung CC, Lobo PA, Kimlicka L, et al. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 2010 ; 468 : 585–588. [CrossRef] [PubMed] [Google Scholar]
  24. Sutko JL, Airey JA, Welch W, et al. The pharmacology of ryanodine and related compounds. Pharmacol Rev 1997 ; 49 : 53–98. [PubMed] [Google Scholar]
  25. El-Hayek R, Lokuta AJ, Arevalo C, et al. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem 1995 ; 270 : 28696–28704. [CrossRef] [PubMed] [Google Scholar]
  26. Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994 ; 77 : 513–523. [CrossRef] [PubMed] [Google Scholar]
  27. Brini M. Ryanodine receptor defects in muscle genetic diseases. Biochem Biophys Res Commun 2004 ; 322 : 1245–1255. [CrossRef] [PubMed] [Google Scholar]
  28. Stuwe T, Correia AR, Lin DH, et al. Nuclear pores. Architecture of the nuclear pore complex coat. Science 2015 ; 347 : 1148–1152. [CrossRef] [PubMed] [Google Scholar]
  29. Schur FK, Hagen WJ, Rumlova M, et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 2015 ; 517 : 505–508. [CrossRef] [PubMed] [Google Scholar]
  30. Wu S, Avila-Sakar A, Kim JM, et al. Fabs enable single particle cryoEM studies of small proteins. Structure 2016 ; 20 : 582–592. [CrossRef] [Google Scholar]
  31. Callaway E. The revolution will not be crystallized: a new method sweeps through structural biology. Nature 2015 ; 525 : 172–174. [CrossRef] [PubMed] [Google Scholar]
  32. Voorhees RM, Hegde RS. Structure of the Sec61 channel opened by a signal sequence. Science 2016 ; 351 : 88–91. [CrossRef] [PubMed] [Google Scholar]
  33. Zubcevik L, Herzik MA, Chung BC, et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 2016 ; 23 : 180–188. [CrossRef] [PubMed] [Google Scholar]
  34. Wu J, Yan Z, Li Z, et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2015 ; 350 : aad2395-. [CrossRef] [PubMed] [Google Scholar]
  35. Cao E, Liao M, Julius D. TRPV1 structures indistinct conformations reveal activation mechanisms. Nature 2015 ; 504 : 107–112. [Google Scholar]
  36. Bai XC, Yan C, Yang G, et al. An atomic structure of human gamma-secretase. Nature 2015 ; 525 : 212–217. [CrossRef] [PubMed] [Google Scholar]
  37. Bai XC, Rajendra E, Yang G, et al. Sampling the conformational space of the catalytic subunit of human gamma-secretase. eLife 2015 ; 4 : e11182. [PubMed] [Google Scholar]
  38. Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 2014 ; 515 : 80–84. [CrossRef] [PubMed] [Google Scholar]
  39. Hite RK, Yuan P, Li Z, et al. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 2015 ; 527 : 198–203. [CrossRef] [PubMed] [Google Scholar]
  40. Fan G, Baker ML, Wang Z, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 2015 ; 527 : 336–341. [CrossRef] [PubMed] [Google Scholar]
  41. Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 2015 ; 527 : 64–69. [CrossRef] [PubMed] [Google Scholar]
  42. Zhou A, Rohou A, Schep DG, et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 2015 ; 4 : e10180. [PubMed] [Google Scholar]
  43. Matthies D, Dalmas O, Borgnia MJ, et al. Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 2016 ; 164 : 747–756. [CrossRef] [PubMed] [Google Scholar]
  44. Dudkina NV, Spicer DA, Reboul CF, et al. Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 2016 ; 7 : 10588. [CrossRef] [PubMed] [Google Scholar]
  45. Paulsen CE, Armache JP, Gao Y, et al. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015 ; 520 : 511–517. [CrossRef] [PubMed] [Google Scholar]
  46. Lunardi J, Fauré J, Marty I, Monnier N. Le récepteur de la ryanodine de type I. Med Sci (Paris) 2008 ; 24 : 897–899. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.