Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 8-9, Août–Septembre 2016
|
|
---|---|---|
Page(s) | 758 - 767 | |
Section | Dossiers techniques | |
DOI | https://doi.org/10.1051/medsci/20163208025 | |
Publié en ligne | 12 septembre 2016 |
- Friedmann D, Messick T, Marmorstein R. Crystallization of macromolecules. Curr Protoc Protein Sci 2011 ; 17 : 4 : 1–26. [Google Scholar]
- Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 2015 ; 33 : 103–114. [CrossRef] [PubMed] [Google Scholar]
- Rupp B. Reviewing biomolecular crystallography proposals: time for a paradigm change. Trends Biochem Sci 2015 ; 40 : 419–421. [CrossRef] [PubMed] [Google Scholar]
- Jonic S, Venien-Bryan C. Protein structure determination by electron cryo-microscopy. Curr Opin Pharmacol 2009 ; 9 : 636–642. [CrossRef] [PubMed] [Google Scholar]
- Eisenstein M. The field that came in from the cold. Nat Methods 2016 ; 13 : 19–22. [CrossRef] [PubMed] [Google Scholar]
- Peckys DB, Korf U, de Jonge N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci Adv 2015 ; 1 : e1500165. [CrossRef] [PubMed] [Google Scholar]
- Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988 ; 21 : 129–228. [CrossRef] [PubMed] [Google Scholar]
- Frank J. Three-dimensional electron microscopy of macromolecular assemblies. New York : Oxford University Press, 2006. [CrossRef] [Google Scholar]
- Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 2016 ; 28 : 171–193. [Google Scholar]
- Gillet R, Felden B. Lost in translation : le déblocage des ribosomes bactériens par le mécanisme de trans-traduction. Med Sci (Paris) 2007 ; 23 : 633–639. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Marzi S, Romby P, Klaholz BP. Quand le fil de l’ARN messager s’entortille et bloque sa traduction…. Med Sci (Paris) 2007 ; 23 : 881–883. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Papillon J, Ménétret JF, Batisse C, et al. L’architecture moléculaire complète de l’AND gyrase révélée par cryo-microscopie électronique. Nouvelles informations sur le mécanisme de surenroulement négatif de l’ADN gyrase Med Sci (Paris) 2014 ; 30 : 1081–1084. [Google Scholar]
- Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 2013 ; 10 : 584–590. [CrossRef] [PubMed] [Google Scholar]
- Sigworth FJ. A maximum-likelihood approach to single-particle image refinement. J Struct Biol 1998 ; 122 : 328–339. [CrossRef] [PubMed] [Google Scholar]
- Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 2012 ; 9 : 853–854. [CrossRef] [PubMed] [Google Scholar]
- Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 2003 ; 333 : 721–745. [CrossRef] [PubMed] [Google Scholar]
- Amunts A, Brown A, Bai XC, et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014 ; 343 : 1485–1489. [CrossRef] [PubMed] [Google Scholar]
- Durr KL, Chen L, Stein RA, et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 2014 ; 158 : 778–792. [CrossRef] [PubMed] [Google Scholar]
- Lu P, Bai XC, Ma D, et al. Three-dimensional structure of human gamma-secretase. Nature 2014 ; 512 : 166–170. [CrossRef] [PubMed] [Google Scholar]
- Yan Z, Bai XC, Yan C, et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2015 ; 517 : 50–55. [CrossRef] [PubMed] [Google Scholar]
- Efremov RG, Leitner A, Aebersold R, et al. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 2015 ; 517 : 39–43. [CrossRef] [PubMed] [Google Scholar]
- Zalk R, Clarke OB, des Georges A, et al. Structure of a mammalian ryanodine receptor. Nature 2015 ; 517 : 44–49. [CrossRef] [PubMed] [Google Scholar]
- Tung CC, Lobo PA, Kimlicka L, et al. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 2010 ; 468 : 585–588. [CrossRef] [PubMed] [Google Scholar]
- Sutko JL, Airey JA, Welch W, et al. The pharmacology of ryanodine and related compounds. Pharmacol Rev 1997 ; 49 : 53–98. [PubMed] [Google Scholar]
- El-Hayek R, Lokuta AJ, Arevalo C, et al. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem 1995 ; 270 : 28696–28704. [CrossRef] [PubMed] [Google Scholar]
- Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994 ; 77 : 513–523. [CrossRef] [PubMed] [Google Scholar]
- Brini M. Ryanodine receptor defects in muscle genetic diseases. Biochem Biophys Res Commun 2004 ; 322 : 1245–1255. [CrossRef] [PubMed] [Google Scholar]
- Stuwe T, Correia AR, Lin DH, et al. Nuclear pores. Architecture of the nuclear pore complex coat. Science 2015 ; 347 : 1148–1152. [CrossRef] [PubMed] [Google Scholar]
- Schur FK, Hagen WJ, Rumlova M, et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 2015 ; 517 : 505–508. [CrossRef] [PubMed] [Google Scholar]
- Wu S, Avila-Sakar A, Kim JM, et al. Fabs enable single particle cryoEM studies of small proteins. Structure 2016 ; 20 : 582–592. [CrossRef] [Google Scholar]
- Callaway E. The revolution will not be crystallized: a new method sweeps through structural biology. Nature 2015 ; 525 : 172–174. [CrossRef] [PubMed] [Google Scholar]
- Voorhees RM, Hegde RS. Structure of the Sec61 channel opened by a signal sequence. Science 2016 ; 351 : 88–91. [CrossRef] [PubMed] [Google Scholar]
- Zubcevik L, Herzik MA, Chung BC, et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 2016 ; 23 : 180–188. [CrossRef] [PubMed] [Google Scholar]
- Wu J, Yan Z, Li Z, et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2015 ; 350 : aad2395-. [CrossRef] [PubMed] [Google Scholar]
- Cao E, Liao M, Julius D. TRPV1 structures indistinct conformations reveal activation mechanisms. Nature 2015 ; 504 : 107–112. [Google Scholar]
- Bai XC, Yan C, Yang G, et al. An atomic structure of human gamma-secretase. Nature 2015 ; 525 : 212–217. [CrossRef] [PubMed] [Google Scholar]
- Bai XC, Rajendra E, Yang G, et al. Sampling the conformational space of the catalytic subunit of human gamma-secretase. eLife 2015 ; 4 : e11182. [PubMed] [Google Scholar]
- Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 2014 ; 515 : 80–84. [CrossRef] [PubMed] [Google Scholar]
- Hite RK, Yuan P, Li Z, et al. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 2015 ; 527 : 198–203. [CrossRef] [PubMed] [Google Scholar]
- Fan G, Baker ML, Wang Z, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 2015 ; 527 : 336–341. [CrossRef] [PubMed] [Google Scholar]
- Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 2015 ; 527 : 64–69. [CrossRef] [PubMed] [Google Scholar]
- Zhou A, Rohou A, Schep DG, et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 2015 ; 4 : e10180. [PubMed] [Google Scholar]
- Matthies D, Dalmas O, Borgnia MJ, et al. Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 2016 ; 164 : 747–756. [CrossRef] [PubMed] [Google Scholar]
- Dudkina NV, Spicer DA, Reboul CF, et al. Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 2016 ; 7 : 10588. [CrossRef] [PubMed] [Google Scholar]
- Paulsen CE, Armache JP, Gao Y, et al. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015 ; 520 : 511–517. [CrossRef] [PubMed] [Google Scholar]
- Lunardi J, Fauré J, Marty I, Monnier N. Le récepteur de la ryanodine de type I. Med Sci (Paris) 2008 ; 24 : 897–899. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.