Free Access
Issue |
Med Sci (Paris)
Volume 31, Number 10, Octobre 2015
|
|
---|---|---|
Page(s) | 869 - 880 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153110013 | |
Published online | 19 October 2015 |
- Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012 ; 26 : 1268–1286. [CrossRef] [PubMed] [Google Scholar]
- Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Cell Biol 2009 ; 9 : 749–758. [Google Scholar]
- Bishof O, Dejean A, Pineau P. Une revue de la sénescence cellulaire : ami ou ennemi de la promotion tumorale ?. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014 ; 35 : 672–688. [CrossRef] [PubMed] [Google Scholar]
- Malkin D.. Li-Fraumeni syndrome. Genes. Cancer 2011 ; 2 : 475–484. [Google Scholar]
- Hock AK, Vousden KH. Tumor suppression by p53: fall of the triumvirate?. Cell 2012 ; 149 : 1183–1189. [CrossRef] [PubMed] [Google Scholar]
- Lacroix M, Linares LK, Le Cam L. Rôle du suppresseur de tumeurs p53 dans le contrôle du métabolisme. Med Sci (Paris) 2013 ; 29 : 1125–1130. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009 ; 137 : 413–429. [CrossRef] [PubMed] [Google Scholar]
- Green D, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009 ; 458 : 1127–1130. [CrossRef] [PubMed] [Google Scholar]
- Venkatanarayan A, Raulji P, Norton W, et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature 2015 ; 517 : 626–630. [CrossRef] [PubMed] [Google Scholar]
- Junttila MR, Evan GI. p53: a Jack of all trades but master of none. Nat Rev Cancer 2009 ; 9 : 821–829. [CrossRef] [PubMed] [Google Scholar]
- Valente LZ, Gray DHD, Michalak EM, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013 ; 3 : 1339–1345. [CrossRef] [PubMed] [Google Scholar]
- Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 ; 520 : 57–62. [CrossRef] [PubMed] [Google Scholar]
- Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg : de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- McKnight SL. On getting there from here. Science 2010 ; 330 : 1338–1339. [CrossRef] [PubMed] [Google Scholar]
- Brooks Robey R, Hay N. Is akt the Warburg kinase? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009; 19 : 25. [CrossRef] [PubMed] [Google Scholar]
- Pacini N, Borziani F. Cancer stem cell theory and the Warburg effect, two sides of the same coin?. Int J Mol Sci 2014 ; 15 : 8893–8930. [CrossRef] [PubMed] [Google Scholar]
- Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer 2009 ; 9 : 691–700. [CrossRef] [PubMed] [Google Scholar]
- Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012 ; 72 : 560–567. [CrossRef] [PubMed] [Google Scholar]
- Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed] [Google Scholar]
- Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011 ; 13 : 310–316. [CrossRef] [PubMed] [Google Scholar]
- Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010 ; 107 : 7455–7460. [CrossRef] [Google Scholar]
- Lachaier E, Louandre C, Ezzoukhry Z, et al. La ferroptose, une nouvelle forme de mort cellulaire applicable au traitement médical des cancers. Med Sci (Paris) 2014 ; 31 : 779–783. [CrossRef] [EDP Sciences] [Google Scholar]
- Berkers CR, Maddocks ODK, Cheung EC, et al. Metabolic regulation by p53 family members. Cell Metab 2013 ; 18 : 617–633. [CrossRef] [PubMed] [Google Scholar]
- Wang SJ, Gu W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol 2014 ; 26 : 78–85. [CrossRef] [PubMed] [Google Scholar]
- Jiang D, LaGory EL, Kenzelmann Broz D, et al. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function. Cell Rep 2015 ; 24 : 1096–1109. [CrossRef] [Google Scholar]
- Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 α. Genes Dev 2000 ; 14 : 34–44. [PubMed] [Google Scholar]
- Levine AJ, Feng Z, Mak TW, et al. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 2006 ; 20 : 267–275. [CrossRef] [PubMed] [Google Scholar]
- Jiang D, Brady CA, Johnson TM, et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci USA 2011 ; 108 : 17123–17128. [CrossRef] [Google Scholar]
- Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med 2005 ; 11 : 1306–1313. [CrossRef] [PubMed] [Google Scholar]
- Miyamoto Y, Kitamura N, Nakamura Y, et al. Possible existence of lysosome-like organelle within mitochondria and its role in mitochondrial quality control. PLoS One 2011 ; 6 : 16054. [CrossRef] [Google Scholar]
- Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008 ; 183 : 795–803. [CrossRef] [PubMed] [Google Scholar]
- Du W, Jiang P, Mancuso A, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013 ; 15 : 991–1000. [CrossRef] [PubMed] [Google Scholar]
- Symonds H, Krall L, Remington L. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994 ; 78 : 703–711. [CrossRef] [PubMed] [Google Scholar]
- Schmitt CA, Fridman JS, Yang M, et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002 ; 1 : 290–298. [CrossRef] [Google Scholar]
- Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 2001 ; 21 : 7653–7662. [CrossRef] [PubMed] [Google Scholar]
- Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014 ; 14 : 359–370. [CrossRef] [PubMed] [Google Scholar]
- Timofeev O, Schlereth K, Wanzel M, et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 2013 ; 3 : 1512–1525. [CrossRef] [PubMed] [Google Scholar]
- Kang MY, Kim HB, Piao C, et al. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ 2013 ; 20 : 117–129. [CrossRef] [PubMed] [Google Scholar]
- Bourdon A, Rotig A. p53R2: réparation de l’ADN ou synthèse de l’ADN mitochondrial ?. Med Sci (Paris) 2007 ; 10 : 803–805. [CrossRef] [EDP Sciences] [Google Scholar]
- Zhang C, Lin M, Wu R, et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA 2011 ; 108 : 16259–16264. [CrossRef] [Google Scholar]
- Sung HJ, Ma W, Wang PY, et al. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 2010 ; 1 : 5. [PubMed] [Google Scholar]
- Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004 ; 36 : 63–68. [CrossRef] [PubMed] [Google Scholar]
- Parrinello S, Samper E, Krtolica A, et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003 ; 5 : 741–747. [CrossRef] [PubMed] [Google Scholar]
- Belyi V, Ak P, Markert E, et al. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2010 ; 2 : a001198. [CrossRef] [PubMed] [Google Scholar]
- Jaber S, Simeonova I, Toledo F. De la mesure en toute chose : dérégulation de p53, cancer et syndromes télomériques. Med Sci (Paris) 2013 ; 12 : 1071–1073. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Morselli E, Galluzzi L, Kepp O, et al. Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 2009 ; 1793 : 1524–1532. [CrossRef] [PubMed] [Google Scholar]
- Zhou G, Wang J, Zhao M, et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 2014 ; 54 : 960–974. [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Liu J, Liang Y, et al. Tumor-associated mutant p53 drives the Warburg effect. Nat Commun 2013 ; 4 : 2935. [PubMed] [Google Scholar]
- Freed-Pastor WA, Mizuno H, Zhao X, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012 ; 148 : 244–258. [CrossRef] [PubMed] [Google Scholar]
- Martin-Caballero M, Flores JM, Garcıa-Palencia P. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res 2001 ; 61 : 6234–6238. [PubMed] [Google Scholar]
- Cosme-Blanco W, Shen MF, Lazar AJ, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007 ; 8 : 497–503. [CrossRef] [PubMed] [Google Scholar]
- Kenzelmann Broz D, Spano Mello S, Bieging KT, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013; 27 : 1016–1031. [CrossRef] [PubMed] [Google Scholar]
- Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ 2006 ; 13 : 2140–2149. [CrossRef] [PubMed] [Google Scholar]
- de Fromentel Caron. C, Aberdam E, Aberdam D. Les deux visages de p63, Janus de la famille p53. Med Sci (Paris) 2012 ; 28 : 381–387. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.