Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 10, Octobre 2015
Page(s) 869 - 880
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153110013
Publié en ligne 19 octobre 2015
  1. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012 ; 26 : 1268–1286. [CrossRef] [PubMed]
  2. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Cell Biol 2009 ; 9 : 749–758.
  3. Bishof O, Dejean A, Pineau P. Une revue de la sénescence cellulaire : ami ou ennemi de la promotion tumorale ?. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed]
  4. Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014 ; 35 : 672–688. [CrossRef] [PubMed]
  5. Malkin D.. Li-Fraumeni syndrome. Genes. Cancer 2011 ; 2 : 475–484.
  6. Hock AK, Vousden KH. Tumor suppression by p53: fall of the triumvirate?. Cell 2012 ; 149 : 1183–1189. [CrossRef] [PubMed]
  7. Lacroix M, Linares LK, Le Cam L. Rôle du suppresseur de tumeurs p53 dans le contrôle du métabolisme. Med Sci (Paris) 2013 ; 29 : 1125–1130. [CrossRef] [EDP Sciences] [PubMed]
  8. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009 ; 137 : 413–429. [CrossRef] [PubMed]
  9. Green D, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009 ; 458 : 1127–1130. [CrossRef] [PubMed]
  10. Venkatanarayan A, Raulji P, Norton W, et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature 2015 ; 517 : 626–630. [CrossRef] [PubMed]
  11. Junttila MR, Evan GI. p53: a Jack of all trades but master of none. Nat Rev Cancer 2009 ; 9 : 821–829. [CrossRef] [PubMed]
  12. Valente LZ, Gray DHD, Michalak EM, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013 ; 3 : 1339–1345. [CrossRef] [PubMed]
  13. Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 ; 520 : 57–62. [CrossRef] [PubMed]
  14. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg : de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed]
  15. McKnight SL. On getting there from here. Science 2010 ; 330 : 1338–1339. [CrossRef] [PubMed]
  16. Brooks Robey R, Hay N. Is akt the Warburg kinase? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009; 19 : 25. [CrossRef] [PubMed]
  17. Pacini N, Borziani F. Cancer stem cell theory and the Warburg effect, two sides of the same coin?. Int J Mol Sci 2014 ; 15 : 8893–8930. [CrossRef] [PubMed]
  18. Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer 2009 ; 9 : 691–700. [CrossRef] [PubMed]
  19. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012 ; 72 : 560–567. [CrossRef] [PubMed]
  20. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed]
  21. Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011 ; 13 : 310–316. [CrossRef] [PubMed]
  22. Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010 ; 107 : 7455–7460. [CrossRef]
  23. Lachaier E, Louandre C, Ezzoukhry Z, et al. La ferroptose, une nouvelle forme de mort cellulaire applicable au traitement médical des cancers. Med Sci (Paris) 2014 ; 31 : 779–783. [CrossRef] [EDP Sciences]
  24. Berkers CR, Maddocks ODK, Cheung EC, et al. Metabolic regulation by p53 family members. Cell Metab 2013 ; 18 : 617–633. [CrossRef] [PubMed]
  25. Wang SJ, Gu W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol 2014 ; 26 : 78–85. [CrossRef] [PubMed]
  26. Jiang D, LaGory EL, Kenzelmann Broz D, et al. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function. Cell Rep 2015 ; 24 : 1096–1109. [CrossRef]
  27. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 α. Genes Dev 2000 ; 14 : 34–44. [PubMed]
  28. Levine AJ, Feng Z, Mak TW, et al. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 2006 ; 20 : 267–275. [CrossRef] [PubMed]
  29. Jiang D, Brady CA, Johnson TM, et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci USA 2011 ; 108 : 17123–17128. [CrossRef]
  30. Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med 2005 ; 11 : 1306–1313. [CrossRef] [PubMed]
  31. Miyamoto Y, Kitamura N, Nakamura Y, et al. Possible existence of lysosome-like organelle within mitochondria and its role in mitochondrial quality control. PLoS One 2011 ; 6 : 16054. [CrossRef]
  32. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008 ; 183 : 795–803. [CrossRef] [PubMed]
  33. Du W, Jiang P, Mancuso A, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013 ; 15 : 991–1000. [CrossRef] [PubMed]
  34. Symonds H, Krall L, Remington L. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994 ; 78 : 703–711. [CrossRef] [PubMed]
  35. Schmitt CA, Fridman JS, Yang M, et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002 ; 1 : 290–298. [CrossRef]
  36. Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 2001 ; 21 : 7653–7662. [CrossRef] [PubMed]
  37. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014 ; 14 : 359–370. [CrossRef] [PubMed]
  38. Timofeev O, Schlereth K, Wanzel M, et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 2013 ; 3 : 1512–1525. [CrossRef] [PubMed]
  39. Kang MY, Kim HB, Piao C, et al. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ 2013 ; 20 : 117–129. [CrossRef] [PubMed]
  40. Bourdon A, Rotig A. p53R2: réparation de l’ADN ou synthèse de l’ADN mitochondrial ?. Med Sci (Paris) 2007 ; 10 : 803–805. [CrossRef] [EDP Sciences]
  41. Zhang C, Lin M, Wu R, et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA 2011 ; 108 : 16259–16264. [CrossRef]
  42. Sung HJ, Ma W, Wang PY, et al. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 2010 ; 1 : 5. [PubMed]
  43. Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004 ; 36 : 63–68. [CrossRef] [PubMed]
  44. Parrinello S, Samper E, Krtolica A, et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003 ; 5 : 741–747. [CrossRef] [PubMed]
  45. Belyi V, Ak P, Markert E, et al. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2010 ; 2 : a001198. [CrossRef] [PubMed]
  46. Jaber S, Simeonova I, Toledo F. De la mesure en toute chose : dérégulation de p53, cancer et syndromes télomériques. Med Sci (Paris) 2013 ; 12 : 1071–1073. [CrossRef] [EDP Sciences] [PubMed]
  47. Morselli E, Galluzzi L, Kepp O, et al. Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 2009 ; 1793 : 1524–1532. [CrossRef] [PubMed]
  48. Zhou G, Wang J, Zhao M, et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 2014 ; 54 : 960–974. [CrossRef] [PubMed]
  49. Zhang C, Liu J, Liang Y, et al. Tumor-associated mutant p53 drives the Warburg effect. Nat Commun 2013 ; 4 : 2935. [PubMed]
  50. Freed-Pastor WA, Mizuno H, Zhao X, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012 ; 148 : 244–258. [CrossRef] [PubMed]
  51. Martin-Caballero M, Flores JM, Garcıa-Palencia P. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res 2001 ; 61 : 6234–6238. [PubMed]
  52. Cosme-Blanco W, Shen MF, Lazar AJ, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007 ; 8 : 497–503. [CrossRef] [PubMed]
  53. Kenzelmann Broz D, Spano Mello S, Bieging KT, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013; 27 : 1016–1031. [CrossRef] [PubMed]
  54. Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ 2006 ; 13 : 2140–2149. [CrossRef] [PubMed]
  55. de Fromentel Caron. C, Aberdam E, Aberdam D. Les deux visages de p63, Janus de la famille p53. Med Sci (Paris) 2012 ; 28 : 381–387. [CrossRef] [EDP Sciences] [PubMed]
  56. Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.