Free Access
Issue |
Med Sci (Paris)
Volume 31, Number 10, Octobre 2015
|
|
---|---|---|
Page(s) | 841 - 852 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153110010 | |
Published online | 19 October 2015 |
- Vose J, Armitage J, Weisenburger D, et al. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008 ; 26 : 412–430. [Google Scholar]
- Parrens M, Martin A, Lamant L, et al. Angioimmunoblastic T-cell lymphoma (AITL) is the most prevalent T-cell lymphoma entity in Western Europe. ASH Annu Meet Abstr 2012 ; 120 : 1607. [Google Scholar]
- De Leval L, Gaulard P. Pathology and biology of peripheral T-cell lymphomas. Histopathology 2011 ; 58 : 49–68. [CrossRef] [PubMed] [Google Scholar]
- Sibon D, Fournier M, Brière J, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’étude des lymphomes de l’adulte trials. J Clin Oncol 2012 ; 30 : 3939–3946. [CrossRef] [PubMed] [Google Scholar]
- Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol 2011; 29 : 4669–76. [CrossRef] [PubMed] [Google Scholar]
- De Leval L, Gaulard P. Pathobiology and molecular profiling of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2008 : 272–279. [CrossRef] [Google Scholar]
- Attygalle A, Al-Jehani R, Diss TC, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 2002 ; 99 : 627–633. [CrossRef] [PubMed] [Google Scholar]
- Ree HJ, Kadin ME, Kikuchi M, et al. Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: heterogeneity of intrafollicular T-cells and their altered distribution in the pathogenesis of angioimmunoblastic T-cell lymphoma. Hum Pathol 1999 ; 30 : 403–411. [CrossRef] [PubMed] [Google Scholar]
- Bisig B, Thielen C, Herens C, et al. c-Maf expression in angioimmunoblastic T-cell lymphoma reflects follicular helper T-cell derivation rather than oncogenesis. Histopathology 2012 ; 60 : 371–376. [CrossRef] [PubMed] [Google Scholar]
- Grogg KL, Attygalle AD, Macon WR, et al. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 2005 ; 106 : 1501–1502. [CrossRef] [PubMed] [Google Scholar]
- Dupuis J, Boye K, Martin N, et al. Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol 2006 ; 30 : 490–494. [CrossRef] [PubMed] [Google Scholar]
- Roncador G, García Verdes-Montenegro JF, Tedoldi S, et al. Expression of two markers of germinal center T cells (SAP and PD-1) in angioimmunoblastic T-cell lymphoma. Haematologica 2007 ; 92 : 1059–1066. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Chen X, Zhong B, et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 2014 ; 507 : 513–518. [CrossRef] [PubMed] [Google Scholar]
- Vinuesa CG, Tangye SG, Moser B, et al. Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 2005 ; 5 : 853–865. [CrossRef] [PubMed] [Google Scholar]
- De Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007 ; 109 : 4952–4963. [CrossRef] [PubMed] [Google Scholar]
- Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 2007 ; 67 : 10703–10710. [CrossRef] [PubMed] [Google Scholar]
- De Leval L, Gaulard P. Tricky and terrible T-cell tumors: these are thrilling times for testing: molecular pathology of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2011 ; 336–343. [CrossRef] [PubMed] [Google Scholar]
- Marafioti T, Paterson JC, Ballabio E, et al. The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell-derivation. Haematologica 2010 ; 95 : 432–439. [CrossRef] [PubMed] [Google Scholar]
- Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 2008 ; 141 : 461–469. [CrossRef] [PubMed] [Google Scholar]
- Almire C, Bertrand P, Ruminy P, et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer 2007 ; 46 : 1011–1018. [CrossRef] [PubMed] [Google Scholar]
- Mahfoudhi E, Secardin L, Scourzic L, et al. Propriétés et rôles biologiques des protéines TET au cours du développement et de l’hématopoïèse. Med Sci (Paris) 2015 ; 31 : 268–274. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 2012 ; 120 : 1466–1469. [CrossRef] [PubMed] [Google Scholar]
- Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T cell lymphoma. Blood 2014 ; 123 : 1293–1296. [CrossRef] [PubMed] [Google Scholar]
- Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014 ; 46 : 166–170. [CrossRef] [PubMed] [Google Scholar]
- Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 2014 ; 46 : 171–175. [CrossRef] [PubMed] [Google Scholar]
- Quivoron C, Couronné L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011 ; 20 : 25–38. [CrossRef] [PubMed] [Google Scholar]
- Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 2012 ; 366 : 95–96. [CrossRef] [PubMed] [Google Scholar]
- Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 2012 ; 119 : 1901–1903. [CrossRef] [PubMed] [Google Scholar]
- Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011 ; 19 : 17–30. [CrossRef] [PubMed] [Google Scholar]
- Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 2014 ; 46 : 371–375. [CrossRef] [PubMed] [Google Scholar]
- Manso R, Sánchez-Beato M, Monsalvo S, et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood 2014 ; 123 : 2893–2894. [CrossRef] [PubMed] [Google Scholar]
- Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 2011 ; 20 : 728–740. [CrossRef] [PubMed] [Google Scholar]
- Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013 ; 121 : 3563–3572. [CrossRef] [PubMed] [Google Scholar]
- Gaulard P, de Leval L. The microenvironment in T-cell lymphomas: emerging themes. Semin Cancer Biol 2014 ; 24 : 49–60. [CrossRef] [PubMed] [Google Scholar]
- Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bruchard M, Ghiringhelli F. Microenvironnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 2007 ; 117 : 823–834. [CrossRef] [PubMed] [Google Scholar]
- Martínez-Delgado B, Cuadros M, Honrado E, et al. Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 2005 ; 19 : 2254–2263. [CrossRef] [PubMed] [Google Scholar]
- Cuadros M, Dave SS, Jaffe ES, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol 2007 ; 25 : 3321–3329. [CrossRef] [PubMed] [Google Scholar]
- Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 2010 ; 115 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
- Leval L, Bisig B, Thielen C, et al. Molecular classification of T-cell lymphomas. Crit Rev Oncol Hematol 2009 ; 72 : 125–143. [CrossRef] [PubMed] [Google Scholar]
- Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014 ; 123 : 2915–2923. [CrossRef] [PubMed] [Google Scholar]
- Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 2014 ; 123 : 3007–3015. [CrossRef] [PubMed] [Google Scholar]
- Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 2010 ; 207 : 1031–1044. [CrossRef] [PubMed] [Google Scholar]
- Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol 2009 ; 33 : 682–690. [CrossRef] [PubMed] [Google Scholar]
- Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 2013 ; 37 : 1456–1457. [CrossRef] [PubMed] [Google Scholar]
- Feldman AL, Sun DX, Law ME, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 2008 ; 22 : 1139–1143. [CrossRef] [PubMed] [Google Scholar]
- Pozzobon M, Marafioti T, Hansmann ML, et al. Intracellular signalling molecules as immunohistochemical markers of normal and neoplastic human leucocytes in routine biopsy samples. Br J Haematol 2004 ; 124 : 519–533. [CrossRef] [PubMed] [Google Scholar]
- Geissinger E, Sadler P, Roth S, et al. Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica 2010 ; 95 : 1697–1704. [CrossRef] [PubMed] [Google Scholar]
- Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 2009 ; 23 : 574–580. [CrossRef] [PubMed] [Google Scholar]
- Thorns C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosomes Cancer 2007 ; 46 : 37–44. [CrossRef] [PubMed] [Google Scholar]
- Zettl A, Rüdiger T, Konrad MA, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004 ; 164 : 1837–1848. [CrossRef] [PubMed] [Google Scholar]
- Mason DY, Bastard C, Rimokh R, et al. CD30-positive large cell lymphomas (Ki-1 lymphoma) are associated with a chromosomal translocation involving 5q35. Br J Haematol 1990 ; 74 : 161–168. [CrossRef] [PubMed] [Google Scholar]
- Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994 ; 263 : 1281–1284. [CrossRef] [PubMed] [Google Scholar]
- Feldman AL, Vasmatzis G, Asmann YW, et al. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosomes Cancer 2013 ; 52 : 1097–1102. [CrossRef] [PubMed] [Google Scholar]
- Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E, et al. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol 2010 ; 130 : 816–825. [CrossRef] [PubMed] [Google Scholar]
- Wada DA, Law ME, Hsi ED, et al. Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 2011 ; 24 : 596–605. [CrossRef] [PubMed] [Google Scholar]
- Ott G, Katzenberger T, Siebert R, et al. Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosomes Cancer 1998 ; 22 : 114–121. [CrossRef] [PubMed] [Google Scholar]
- Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008 ; 8 : 11–23. [CrossRef] [PubMed] [Google Scholar]
- Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005 ; 11 : 623–629. [CrossRef] [PubMed] [Google Scholar]
- Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene 2004 ; 23 : 5426–5434. [CrossRef] [PubMed] [Google Scholar]
- Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 2010 ; 28 : 1583–1590. [CrossRef] [PubMed] [Google Scholar]
- Spaccarotella E, Pellegrino E, Ferracin M, et al. STAT3-mediated activation of microRNA cluster 17–92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica 2014 ; 99 : 116–124. [CrossRef] [PubMed] [Google Scholar]
- Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med 2012 ; 18 : 1699–1704. [CrossRef] [PubMed] [Google Scholar]
- Desjobert C, Renalier MH, Bergalet J, et al. MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression. Blood 2011 ; 117 : 6627–6637. [CrossRef] [PubMed] [Google Scholar]
- Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013 ; 368 : 2385–2394. [CrossRef] [PubMed] [Google Scholar]
- Mossé YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a children’s oncology group phase 1 consortium study. Lancet Oncol 2013 ; 14 : 472–480. [CrossRef] [PubMed] [Google Scholar]
- Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 2011 ; 364 : 775–776. [CrossRef] [PubMed] [Google Scholar]
- Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 2012 ; 120 : 1274–1281. [CrossRef] [PubMed] [Google Scholar]
- Lamant L, de Reyniès A, Duplantier M-M, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 2007 ; 109 : 2156–2164. [CrossRef] [PubMed] [Google Scholar]
- Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol 2013 ; 31 : 3019–3025. [CrossRef] [PubMed] [Google Scholar]
- Gualco G, Weiss LM, Bacchi CE. MUM1/IRF4: a review. Appl Immunohistochem Mol Morphol 2010 ; 18 : 301–310. [CrossRef] [PubMed] [Google Scholar]
- Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011 ; 117 : 915–919. [CrossRef] [PubMed] [Google Scholar]
- Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014 ; 124 : 1473–1480. [CrossRef] [PubMed] [Google Scholar]
- Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 2013 ; 122 : 2683–2693. [CrossRef] [PubMed] [Google Scholar]
- Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 2015 ; 27 : 516–532. [CrossRef] [PubMed] [Google Scholar]
- Turner CAJr, Mack DH, Davis MM. Pillars article: Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. 1994. J Immunol 2010 ; 185 : 5–14. [CrossRef] [PubMed] [Google Scholar]
- Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006 ; 203 : 311–317. [CrossRef] [PubMed] [Google Scholar]
- Tam W, Gomez M, Chadburn A, et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006 ; 107 : 4090–4100. [CrossRef] [PubMed] [Google Scholar]
- Calado DP, Zhang B, Srinivasan L, et al. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010 ; 18 : 580–589. [CrossRef] [PubMed] [Google Scholar]
- Mandelbaum J, Bhagat G, Tang H, et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010 ; 18 : 568–579. [CrossRef] [PubMed] [Google Scholar]
- Kallies A, Hawkins ED, Belz GT, et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 2006 ; 7 : 466–474. [CrossRef] [PubMed] [Google Scholar]
- Martins GA, Cimmino L, Shapiro-Shelef M, et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 2006 ; 7 : 457–465. [CrossRef] [PubMed] [Google Scholar]
- Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010 ; 363 : 1812–1821. [CrossRef] [PubMed] [Google Scholar]
- Abkowitz JL. Clone wars: the emergence of neoplastic blood-cell clones with aging. N Engl J Med 2014 ; 371 : 2523–2525. [CrossRef] [PubMed] [Google Scholar]
- Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014 ; 371 : 2488–2498. [CrossRef] [PubMed] [Google Scholar]
- Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014 ; 371 : 2477–2487. [CrossRef] [PubMed] [Google Scholar]
- Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014 ; 20 : 1472–1478. [CrossRef] [PubMed] [Google Scholar]
- Chung SS, Kim E, Park JH, et al. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia. Sci Transl Med 2014; 6 : 238ra71. [CrossRef] [PubMed] [Google Scholar]
- Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 2014 ; 4 : 1088–1101. [CrossRef] [PubMed] [Google Scholar]
- Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 2011 ; 20 : 246–259. [CrossRef] [PubMed] [Google Scholar]
- Rizkallah G, Mahieux R, Dutartre H. Transmission intercellulaire de HTLV-1. Med Sci (Paris) 2015 ; 31 : 629–637. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Yamazaki J, Mizukami T, Takizawa K, et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009 ; 114 : 2709–2720. [CrossRef] [PubMed] [Google Scholar]
- Duc Dodon M, Barbeau B, Mesnard JM. Leucémies T induites par HTLV-1 : y a-t-il un avant et un après HBZ ? Med Sci (Paris) 2010; 26 : 391–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 2009 ; 23 : 574–580. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.