Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 10, Octobre 2015
Page(s) 841 - 852
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153110010
Publié en ligne 19 octobre 2015
  1. Vose J, Armitage J, Weisenburger D, et al. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008 ; 26 : 412–430. [Google Scholar]
  2. Parrens M, Martin A, Lamant L, et al. Angioimmunoblastic T-cell lymphoma (AITL) is the most prevalent T-cell lymphoma entity in Western Europe. ASH Annu Meet Abstr 2012 ; 120 : 1607. [Google Scholar]
  3. De Leval L, Gaulard P. Pathology and biology of peripheral T-cell lymphomas. Histopathology 2011 ; 58 : 49–68. [CrossRef] [PubMed] [Google Scholar]
  4. Sibon D, Fournier M, Brière J, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’étude des lymphomes de l’adulte trials. J Clin Oncol 2012 ; 30 : 3939–3946. [CrossRef] [PubMed] [Google Scholar]
  5. Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol 2011; 29 : 4669–76. [CrossRef] [PubMed] [Google Scholar]
  6. De Leval L, Gaulard P. Pathobiology and molecular profiling of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2008 : 272–279. [CrossRef] [Google Scholar]
  7. Attygalle A, Al-Jehani R, Diss TC, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 2002 ; 99 : 627–633. [CrossRef] [PubMed] [Google Scholar]
  8. Ree HJ, Kadin ME, Kikuchi M, et al. Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: heterogeneity of intrafollicular T-cells and their altered distribution in the pathogenesis of angioimmunoblastic T-cell lymphoma. Hum Pathol 1999 ; 30 : 403–411. [CrossRef] [PubMed] [Google Scholar]
  9. Bisig B, Thielen C, Herens C, et al. c-Maf expression in angioimmunoblastic T-cell lymphoma reflects follicular helper T-cell derivation rather than oncogenesis. Histopathology 2012 ; 60 : 371–376. [CrossRef] [PubMed] [Google Scholar]
  10. Grogg KL, Attygalle AD, Macon WR, et al. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 2005 ; 106 : 1501–1502. [CrossRef] [PubMed] [Google Scholar]
  11. Dupuis J, Boye K, Martin N, et al. Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol 2006 ; 30 : 490–494. [CrossRef] [PubMed] [Google Scholar]
  12. Roncador G, García Verdes-Montenegro JF, Tedoldi S, et al. Expression of two markers of germinal center T cells (SAP and PD-1) in angioimmunoblastic T-cell lymphoma. Haematologica 2007 ; 92 : 1059–1066. [CrossRef] [PubMed] [Google Scholar]
  13. Liu X, Chen X, Zhong B, et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 2014 ; 507 : 513–518. [CrossRef] [PubMed] [Google Scholar]
  14. Vinuesa CG, Tangye SG, Moser B, et al. Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 2005 ; 5 : 853–865. [CrossRef] [PubMed] [Google Scholar]
  15. De Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007 ; 109 : 4952–4963. [CrossRef] [PubMed] [Google Scholar]
  16. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 2007 ; 67 : 10703–10710. [CrossRef] [PubMed] [Google Scholar]
  17. De Leval L, Gaulard P. Tricky and terrible T-cell tumors: these are thrilling times for testing: molecular pathology of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2011 ; 336–343. [CrossRef] [PubMed] [Google Scholar]
  18. Marafioti T, Paterson JC, Ballabio E, et al. The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell-derivation. Haematologica 2010 ; 95 : 432–439. [CrossRef] [PubMed] [Google Scholar]
  19. Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 2008 ; 141 : 461–469. [CrossRef] [PubMed] [Google Scholar]
  20. Almire C, Bertrand P, Ruminy P, et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer 2007 ; 46 : 1011–1018. [CrossRef] [PubMed] [Google Scholar]
  21. Mahfoudhi E, Secardin L, Scourzic L, et al. Propriétés et rôles biologiques des protéines TET au cours du développement et de l’hématopoïèse. Med Sci (Paris) 2015 ; 31 : 268–274. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 2012 ; 120 : 1466–1469. [CrossRef] [PubMed] [Google Scholar]
  23. Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T cell lymphoma. Blood 2014 ; 123 : 1293–1296. [CrossRef] [PubMed] [Google Scholar]
  24. Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014 ; 46 : 166–170. [CrossRef] [PubMed] [Google Scholar]
  25. Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 2014 ; 46 : 171–175. [CrossRef] [PubMed] [Google Scholar]
  26. Quivoron C, Couronné L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011 ; 20 : 25–38. [CrossRef] [PubMed] [Google Scholar]
  27. Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 2012 ; 366 : 95–96. [CrossRef] [PubMed] [Google Scholar]
  28. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 2012 ; 119 : 1901–1903. [CrossRef] [PubMed] [Google Scholar]
  29. Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011 ; 19 : 17–30. [CrossRef] [PubMed] [Google Scholar]
  30. Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 2014 ; 46 : 371–375. [CrossRef] [PubMed] [Google Scholar]
  31. Manso R, Sánchez-Beato M, Monsalvo S, et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood 2014 ; 123 : 2893–2894. [CrossRef] [PubMed] [Google Scholar]
  32. Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 2011 ; 20 : 728–740. [CrossRef] [PubMed] [Google Scholar]
  33. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013 ; 121 : 3563–3572. [CrossRef] [PubMed] [Google Scholar]
  34. Gaulard P, de Leval L. The microenvironment in T-cell lymphomas: emerging themes. Semin Cancer Biol 2014 ; 24 : 49–60. [CrossRef] [PubMed] [Google Scholar]
  35. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Bruchard M, Ghiringhelli F. Microenvironnement tumoral : cellules régulatrices et cytokines immunosuppressives. Med Sci (Paris) 2014 ; 30 : 429–435. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 2007 ; 117 : 823–834. [CrossRef] [PubMed] [Google Scholar]
  38. Martínez-Delgado B, Cuadros M, Honrado E, et al. Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 2005 ; 19 : 2254–2263. [CrossRef] [PubMed] [Google Scholar]
  39. Cuadros M, Dave SS, Jaffe ES, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol 2007 ; 25 : 3321–3329. [CrossRef] [PubMed] [Google Scholar]
  40. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 2010 ; 115 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
  41. Leval L, Bisig B, Thielen C, et al. Molecular classification of T-cell lymphomas. Crit Rev Oncol Hematol 2009 ; 72 : 125–143. [CrossRef] [PubMed] [Google Scholar]
  42. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014 ; 123 : 2915–2923. [CrossRef] [PubMed] [Google Scholar]
  43. Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 2014 ; 123 : 3007–3015. [CrossRef] [PubMed] [Google Scholar]
  44. Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 2010 ; 207 : 1031–1044. [CrossRef] [PubMed] [Google Scholar]
  45. Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol 2009 ; 33 : 682–690. [CrossRef] [PubMed] [Google Scholar]
  46. Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 2013 ; 37 : 1456–1457. [CrossRef] [PubMed] [Google Scholar]
  47. Feldman AL, Sun DX, Law ME, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 2008 ; 22 : 1139–1143. [CrossRef] [PubMed] [Google Scholar]
  48. Pozzobon M, Marafioti T, Hansmann ML, et al. Intracellular signalling molecules as immunohistochemical markers of normal and neoplastic human leucocytes in routine biopsy samples. Br J Haematol 2004 ; 124 : 519–533. [CrossRef] [PubMed] [Google Scholar]
  49. Geissinger E, Sadler P, Roth S, et al. Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica 2010 ; 95 : 1697–1704. [CrossRef] [PubMed] [Google Scholar]
  50. Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 2009 ; 23 : 574–580. [CrossRef] [PubMed] [Google Scholar]
  51. Thorns C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosomes Cancer 2007 ; 46 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  52. Zettl A, Rüdiger T, Konrad MA, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004 ; 164 : 1837–1848. [CrossRef] [PubMed] [Google Scholar]
  53. Mason DY, Bastard C, Rimokh R, et al. CD30-positive large cell lymphomas (Ki-1 lymphoma) are associated with a chromosomal translocation involving 5q35. Br J Haematol 1990 ; 74 : 161–168. [CrossRef] [PubMed] [Google Scholar]
  54. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994 ; 263 : 1281–1284. [CrossRef] [PubMed] [Google Scholar]
  55. Feldman AL, Vasmatzis G, Asmann YW, et al. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosomes Cancer 2013 ; 52 : 1097–1102. [CrossRef] [PubMed] [Google Scholar]
  56. Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E, et al. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol 2010 ; 130 : 816–825. [CrossRef] [PubMed] [Google Scholar]
  57. Wada DA, Law ME, Hsi ED, et al. Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 2011 ; 24 : 596–605. [CrossRef] [PubMed] [Google Scholar]
  58. Ott G, Katzenberger T, Siebert R, et al. Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosomes Cancer 1998 ; 22 : 114–121. [CrossRef] [PubMed] [Google Scholar]
  59. Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008 ; 8 : 11–23. [CrossRef] [PubMed] [Google Scholar]
  60. Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005 ; 11 : 623–629. [CrossRef] [PubMed] [Google Scholar]
  61. Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene 2004 ; 23 : 5426–5434. [CrossRef] [PubMed] [Google Scholar]
  62. Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 2010 ; 28 : 1583–1590. [CrossRef] [PubMed] [Google Scholar]
  63. Spaccarotella E, Pellegrino E, Ferracin M, et al. STAT3-mediated activation of microRNA cluster 17–92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica 2014 ; 99 : 116–124. [CrossRef] [PubMed] [Google Scholar]
  64. Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med 2012 ; 18 : 1699–1704. [CrossRef] [PubMed] [Google Scholar]
  65. Desjobert C, Renalier MH, Bergalet J, et al. MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression. Blood 2011 ; 117 : 6627–6637. [CrossRef] [PubMed] [Google Scholar]
  66. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013 ; 368 : 2385–2394. [CrossRef] [PubMed] [Google Scholar]
  67. Mossé YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a children’s oncology group phase 1 consortium study. Lancet Oncol 2013 ; 14 : 472–480. [CrossRef] [PubMed] [Google Scholar]
  68. Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 2011 ; 364 : 775–776. [CrossRef] [PubMed] [Google Scholar]
  69. Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 2012 ; 120 : 1274–1281. [CrossRef] [PubMed] [Google Scholar]
  70. Lamant L, de Reyniès A, Duplantier M-M, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 2007 ; 109 : 2156–2164. [CrossRef] [PubMed] [Google Scholar]
  71. Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol 2013 ; 31 : 3019–3025. [CrossRef] [PubMed] [Google Scholar]
  72. Gualco G, Weiss LM, Bacchi CE. MUM1/IRF4: a review. Appl Immunohistochem Mol Morphol 2010 ; 18 : 301–310. [CrossRef] [PubMed] [Google Scholar]
  73. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011 ; 117 : 915–919. [CrossRef] [PubMed] [Google Scholar]
  74. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014 ; 124 : 1473–1480. [CrossRef] [PubMed] [Google Scholar]
  75. Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 2013 ; 122 : 2683–2693. [CrossRef] [PubMed] [Google Scholar]
  76. Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 2015 ; 27 : 516–532. [CrossRef] [PubMed] [Google Scholar]
  77. Turner CAJr, Mack DH, Davis MM. Pillars article: Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. 1994. J Immunol 2010 ; 185 : 5–14. [CrossRef] [PubMed] [Google Scholar]
  78. Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006 ; 203 : 311–317. [CrossRef] [PubMed] [Google Scholar]
  79. Tam W, Gomez M, Chadburn A, et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006 ; 107 : 4090–4100. [CrossRef] [PubMed] [Google Scholar]
  80. Calado DP, Zhang B, Srinivasan L, et al. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010 ; 18 : 580–589. [CrossRef] [PubMed] [Google Scholar]
  81. Mandelbaum J, Bhagat G, Tang H, et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010 ; 18 : 568–579. [CrossRef] [PubMed] [Google Scholar]
  82. Kallies A, Hawkins ED, Belz GT, et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 2006 ; 7 : 466–474. [CrossRef] [PubMed] [Google Scholar]
  83. Martins GA, Cimmino L, Shapiro-Shelef M, et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 2006 ; 7 : 457–465. [CrossRef] [PubMed] [Google Scholar]
  84. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010 ; 363 : 1812–1821. [CrossRef] [PubMed] [Google Scholar]
  85. Abkowitz JL. Clone wars: the emergence of neoplastic blood-cell clones with aging. N Engl J Med 2014 ; 371 : 2523–2525. [CrossRef] [PubMed] [Google Scholar]
  86. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014 ; 371 : 2488–2498. [CrossRef] [PubMed] [Google Scholar]
  87. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014 ; 371 : 2477–2487. [CrossRef] [PubMed] [Google Scholar]
  88. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014 ; 20 : 1472–1478. [CrossRef] [PubMed] [Google Scholar]
  89. Chung SS, Kim E, Park JH, et al. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia. Sci Transl Med 2014; 6 : 238ra71. [CrossRef] [PubMed] [Google Scholar]
  90. Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 2014 ; 4 : 1088–1101. [CrossRef] [PubMed] [Google Scholar]
  91. Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 2011 ; 20 : 246–259. [CrossRef] [PubMed] [Google Scholar]
  92. Rizkallah G, Mahieux R, Dutartre H. Transmission intercellulaire de HTLV-1. Med Sci (Paris) 2015 ; 31 : 629–637. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  93. Yamazaki J, Mizukami T, Takizawa K, et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009 ; 114 : 2709–2720. [CrossRef] [PubMed] [Google Scholar]
  94. Duc Dodon M, Barbeau B, Mesnard JM. Leucémies T induites par HTLV-1 : y a-t-il un avant et un après HBZ ? Med Sci (Paris) 2010; 26 : 391–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  95. Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 2009 ; 23 : 574–580. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.