Free Access
Issue
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Page(s) 756 - 763
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108014
Published online 04 September 2015
  1. Boldt DH. New perspectives on iron: an introduction. Am J Med Sci 1999 ; 318 : 207–212. [CrossRef] [PubMed] [Google Scholar]
  2. Andrews NC. Disorders of iron metabolism. N Engl J Med 1999 ; 341 : 1986–1995. [CrossRef] [PubMed] [Google Scholar]
  3. Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 2008 ; 45 : 1–23. [CrossRef] [PubMed] [Google Scholar]
  4. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014 ; 10 : 9–17. [CrossRef] [PubMed] [Google Scholar]
  5. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012 ; 24 : 981–990. [CrossRef] [PubMed] [Google Scholar]
  6. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 2002 ; 91 : 9–18. [CrossRef] [PubMed] [Google Scholar]
  7. Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 2014 ; 5 : 45. [CrossRef] [PubMed] [Google Scholar]
  8. Breuer W, Shvartsman M, Cabantchik ZI. Intracellular labile iron. Int J Biochem Cell Biol 2008 ; 40 : 350–354. [CrossRef] [PubMed] [Google Scholar]
  9. Schalk IJ. Innovation and originality in the strategies developed by bacteria to get access to iron. Chembiochem 2013 ; 14 : 293–294. [CrossRef] [PubMed] [Google Scholar]
  10. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013 ; 3 : 75. [CrossRef] [PubMed] [Google Scholar]
  11. Boukhalfa H, Crumbliss AL. Chemical aspects of siderophore mediated iron transport. Biometals 2002 ; 15 : 325–339. [CrossRef] [PubMed] [Google Scholar]
  12. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010 ; 27 : 637–657. [CrossRef] [PubMed] [Google Scholar]
  13. Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013 ; 3 : 80. [CrossRef] [PubMed] [Google Scholar]
  14. Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013 ; 5 : 15–28. [CrossRef] [PubMed] [Google Scholar]
  15. Schalk IJ, Mislin GL, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 2012 ; 69 : 37–66. [CrossRef] [PubMed] [Google Scholar]
  16. Schalk IJ, Guillon L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 2013 ; 44 : 1267–1277. [CrossRef] [PubMed] [Google Scholar]
  17. Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 2003 ; 100 : 3584–3588. [CrossRef] [Google Scholar]
  18. Rodriguez GM. Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 2006 ; 14 : 320–327. [CrossRef] [PubMed] [Google Scholar]
  19. Cornelis P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 2010 ; 86 : 1637–1645. [CrossRef] [PubMed] [Google Scholar]
  20. Correnti C, Strong RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J Biol Chem 2012 ; 287 : 13524–13531. [CrossRef] [PubMed] [Google Scholar]
  21. Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2013 ; 53 : 303–317. [CrossRef] [PubMed] [Google Scholar]
  22. Ward RJ, Crichton RR, Taylor DL, et al. Iron and the immune system. J Neural Transm 2011 ; 118 : 315–328. [CrossRef] [PubMed] [Google Scholar]
  23. Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol 2009 ; 21 : 63–67. [CrossRef] [PubMed] [Google Scholar]
  24. Clifton MC, Corrent C, Strong RK. Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 2009 ; 22 : 557–564. [CrossRef] [PubMed] [Google Scholar]
  25. Sia AK, Allred BE, Raymond KN. Siderocalins: Siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 2013 ; 17 : 150–157. [CrossRef] [PubMed] [Google Scholar]
  26. Akerstrom B, Flower DR, Salier JP. Lipocalins: unity in diversity. Biochim Biophys Acta 2000 ; 1482 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  27. Singer E, Marko L, Paragas N, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf) 2013 ; 207 : 663–672. [CrossRef] [PubMed] [Google Scholar]
  28. Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell 2002 ; 10 : 1045–1056. [CrossRef] [PubMed] [Google Scholar]
  29. Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002 ; 10 : 1033–1043. [CrossRef] [PubMed] [Google Scholar]
  30. Abergel RJ, Clifton MC, Pizarro JC, et al. The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 2008 ; 130 : 11524–11534. [CrossRef] [PubMed] [Google Scholar]
  31. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004 ; 432 : 917–921. [CrossRef] [PubMed] [Google Scholar]
  32. Paragas N, Kulkarni R, Werth M, et al. alpha-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014 ; 124 : 2963–2976. [CrossRef] [PubMed] [Google Scholar]
  33. Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2013 ; 9 : e1003120. [CrossRef] [PubMed] [Google Scholar]
  34. Jones CM, Wells RM, Madduri AV, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci USA 2014 ; 111 : 1945–1950. [CrossRef] [Google Scholar]
  35. Mislin GL, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014 ; 6 : 408–420. [CrossRef] [PubMed] [Google Scholar]
  36. Pramanik A, Braun V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 2006 ; 188 : 3878–3886. [CrossRef] [PubMed] [Google Scholar]
  37. Braun V. Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist Updat 1999 ; 2 : 363–369. [CrossRef] [PubMed] [Google Scholar]
  38. Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans 2012 ; 40 : 1456–1462. [CrossRef] [PubMed] [Google Scholar]
  39. De Carvalho CC, Fernandes P. Siderophores as Trojan horses: tackling multidrug resistance? Front Microbiol 2014 ; 5 : 290. [CrossRef] [PubMed] [Google Scholar]
  40. Koppenhoefer B, Epperlein U, Xiaofeng Z, Bingcheng L. Separation of enantiomers of drugs by capillary electrophoresis. Part 4: hydroxypropyl-gamma-cyclodextrin as chiral solvating agent. Electrophoresis 1997 ; 18 : 924–930. [CrossRef] [PubMed] [Google Scholar]
  41. Kwiatkowski JL. Real-world use of iron chelators. Hematology Am Soc Hematol Educ Program 2011 ; 2011 : 451–458. [CrossRef] [PubMed] [Google Scholar]
  42. Evans RW, Kong X, Hider RC. Iron mobilization from transferrin by therapeutic iron chelating agents. Biochim Biophys Acta 2012 ; 1820 : 282–290. [CrossRef] [PubMed] [Google Scholar]
  43. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 2005 ; 123 : 1293–1305. [CrossRef] [PubMed] [Google Scholar]
  44. Richardson DR. Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem 2005 ; 12 : 2711–2729. [CrossRef] [PubMed] [Google Scholar]
  45. Richardson DR. 24p3 and its receptor: dawn of a new iron age? Cell 2005 ; 123 : 1175–1177. [CrossRef] [PubMed] [Google Scholar]
  46. Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 2010 ; 141 : 1006–1017. [CrossRef] [PubMed] [Google Scholar]
  47. Liu Z, Ciocea A, Devireddy L. Endogenous siderophore 2,5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice. Mol Cell Biol 2014 ; 34 : 2533–2546. [CrossRef] [PubMed] [Google Scholar]
  48. Liu Z, Reba S, Chen WD, et al. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J Exp Med 2014 ; 211 : 1197–1213. [CrossRef] [PubMed] [Google Scholar]
  49. Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 2014 ; 5 : 124. [PubMed] [Google Scholar]
  50. Liu Z, Lanford R, Mueller S, et al. Siderophore-mediated iron trafficking in humans is regulated by iron. J Mol Med (Berl) 2012 ; 90 : 1209–1221. [CrossRef] [PubMed] [Google Scholar]
  51. Bao G, Clifton M, Hoette TM, et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 2010 ; 6 : 602–609. [CrossRef] [PubMed] [Google Scholar]
  52. Martin AK. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br J Nutr 1982 ; 48 : 497–507. [CrossRef] [PubMed] [Google Scholar]
  53. Correnti C, Richardson V, Sia AK, et al. Siderocalin/Lcn2/NGAL/24p3 does not drive apoptosis through gentisic acid mediated iron withdrawal in hematopoietic cell lines. PLoS One 2012 ; 7 : e43696. [CrossRef] [PubMed] [Google Scholar]
  54. Py B, Barras F. Du fer et du soufre dans les protéines : comment la cellule construit-elle les cofacteurs fer-soufre essentiels à son fonctionnement ? Med Sci (Paris) 2014 ; 30 : 1110–1122. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Nicolas G, Vaulont S. Le mécanisme d’action de l’hepcidine déchiffré. Med Sci (Paris) 2005 ; 21 : 7–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Viatte L, Vaulont S. Prévenir et guérir les surcharges en fer, les espoirs de l’hepcidine. Med Sci (Paris) 2006 ; 22 : 696–698. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.