Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 8-9, Août–Septembre 2015
Page(s) 756 - 763
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108014
Publié en ligne 4 septembre 2015
  1. Boldt DH. New perspectives on iron: an introduction. Am J Med Sci 1999 ; 318 : 207–212. [CrossRef] [PubMed]
  2. Andrews NC. Disorders of iron metabolism. N Engl J Med 1999 ; 341 : 1986–1995. [CrossRef] [PubMed]
  3. Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 2008 ; 45 : 1–23. [CrossRef] [PubMed]
  4. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014 ; 10 : 9–17. [CrossRef] [PubMed]
  5. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012 ; 24 : 981–990. [CrossRef] [PubMed]
  6. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 2002 ; 91 : 9–18. [CrossRef] [PubMed]
  7. Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 2014 ; 5 : 45. [CrossRef] [PubMed]
  8. Breuer W, Shvartsman M, Cabantchik ZI. Intracellular labile iron. Int J Biochem Cell Biol 2008 ; 40 : 350–354. [CrossRef] [PubMed]
  9. Schalk IJ. Innovation and originality in the strategies developed by bacteria to get access to iron. Chembiochem 2013 ; 14 : 293–294. [CrossRef] [PubMed]
  10. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013 ; 3 : 75. [CrossRef] [PubMed]
  11. Boukhalfa H, Crumbliss AL. Chemical aspects of siderophore mediated iron transport. Biometals 2002 ; 15 : 325–339. [CrossRef] [PubMed]
  12. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010 ; 27 : 637–657. [CrossRef] [PubMed]
  13. Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013 ; 3 : 80. [CrossRef] [PubMed]
  14. Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013 ; 5 : 15–28. [CrossRef] [PubMed]
  15. Schalk IJ, Mislin GL, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 2012 ; 69 : 37–66. [CrossRef] [PubMed]
  16. Schalk IJ, Guillon L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 2013 ; 44 : 1267–1277. [CrossRef] [PubMed]
  17. Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 2003 ; 100 : 3584–3588. [CrossRef]
  18. Rodriguez GM. Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 2006 ; 14 : 320–327. [CrossRef] [PubMed]
  19. Cornelis P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 2010 ; 86 : 1637–1645. [CrossRef] [PubMed]
  20. Correnti C, Strong RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J Biol Chem 2012 ; 287 : 13524–13531. [CrossRef] [PubMed]
  21. Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2013 ; 53 : 303–317. [CrossRef] [PubMed]
  22. Ward RJ, Crichton RR, Taylor DL, et al. Iron and the immune system. J Neural Transm 2011 ; 118 : 315–328. [CrossRef] [PubMed]
  23. Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol 2009 ; 21 : 63–67. [CrossRef] [PubMed]
  24. Clifton MC, Corrent C, Strong RK. Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 2009 ; 22 : 557–564. [CrossRef] [PubMed]
  25. Sia AK, Allred BE, Raymond KN. Siderocalins: Siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 2013 ; 17 : 150–157. [CrossRef] [PubMed]
  26. Akerstrom B, Flower DR, Salier JP. Lipocalins: unity in diversity. Biochim Biophys Acta 2000 ; 1482 : 1–8. [CrossRef] [PubMed]
  27. Singer E, Marko L, Paragas N, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf) 2013 ; 207 : 663–672. [CrossRef] [PubMed]
  28. Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell 2002 ; 10 : 1045–1056. [CrossRef] [PubMed]
  29. Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002 ; 10 : 1033–1043. [CrossRef] [PubMed]
  30. Abergel RJ, Clifton MC, Pizarro JC, et al. The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 2008 ; 130 : 11524–11534. [CrossRef] [PubMed]
  31. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004 ; 432 : 917–921. [CrossRef] [PubMed]
  32. Paragas N, Kulkarni R, Werth M, et al. alpha-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014 ; 124 : 2963–2976. [CrossRef] [PubMed]
  33. Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2013 ; 9 : e1003120. [CrossRef] [PubMed]
  34. Jones CM, Wells RM, Madduri AV, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci USA 2014 ; 111 : 1945–1950. [CrossRef]
  35. Mislin GL, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014 ; 6 : 408–420. [CrossRef] [PubMed]
  36. Pramanik A, Braun V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 2006 ; 188 : 3878–3886. [CrossRef] [PubMed]
  37. Braun V. Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist Updat 1999 ; 2 : 363–369. [CrossRef] [PubMed]
  38. Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans 2012 ; 40 : 1456–1462. [CrossRef] [PubMed]
  39. De Carvalho CC, Fernandes P. Siderophores as Trojan horses: tackling multidrug resistance? Front Microbiol 2014 ; 5 : 290. [CrossRef] [PubMed]
  40. Koppenhoefer B, Epperlein U, Xiaofeng Z, Bingcheng L. Separation of enantiomers of drugs by capillary electrophoresis. Part 4: hydroxypropyl-gamma-cyclodextrin as chiral solvating agent. Electrophoresis 1997 ; 18 : 924–930. [CrossRef] [PubMed]
  41. Kwiatkowski JL. Real-world use of iron chelators. Hematology Am Soc Hematol Educ Program 2011 ; 2011 : 451–458. [CrossRef] [PubMed]
  42. Evans RW, Kong X, Hider RC. Iron mobilization from transferrin by therapeutic iron chelating agents. Biochim Biophys Acta 2012 ; 1820 : 282–290. [CrossRef] [PubMed]
  43. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 2005 ; 123 : 1293–1305. [CrossRef]
  44. Richardson DR. Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem 2005 ; 12 : 2711–2729. [CrossRef] [PubMed]
  45. Richardson DR. 24p3 and its receptor: dawn of a new iron age? Cell 2005 ; 123 : 1175–1177. [CrossRef]
  46. Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 2010 ; 141 : 1006–1017. [CrossRef]
  47. Liu Z, Ciocea A, Devireddy L. Endogenous siderophore 2,5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice. Mol Cell Biol 2014 ; 34 : 2533–2546. [CrossRef] [PubMed]
  48. Liu Z, Reba S, Chen WD, et al. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J Exp Med 2014 ; 211 : 1197–1213. [CrossRef] [PubMed]
  49. Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 2014 ; 5 : 124. [PubMed]
  50. Liu Z, Lanford R, Mueller S, et al. Siderophore-mediated iron trafficking in humans is regulated by iron. J Mol Med (Berl) 2012 ; 90 : 1209–1221. [CrossRef] [PubMed]
  51. Bao G, Clifton M, Hoette TM, et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 2010 ; 6 : 602–609. [CrossRef] [PubMed]
  52. Martin AK. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br J Nutr 1982 ; 48 : 497–507. [CrossRef] [PubMed]
  53. Correnti C, Richardson V, Sia AK, et al. Siderocalin/Lcn2/NGAL/24p3 does not drive apoptosis through gentisic acid mediated iron withdrawal in hematopoietic cell lines. PLoS One 2012 ; 7 : e43696. [CrossRef] [PubMed]
  54. Py B, Barras F. Du fer et du soufre dans les protéines : comment la cellule construit-elle les cofacteurs fer-soufre essentiels à son fonctionnement ? Med Sci (Paris) 2014 ; 30 : 1110–1122. [CrossRef] [EDP Sciences] [PubMed]
  55. Nicolas G, Vaulont S. Le mécanisme d’action de l’hepcidine déchiffré. Med Sci (Paris) 2005 ; 21 : 7–9. [CrossRef] [EDP Sciences] [PubMed]
  56. Viatte L, Vaulont S. Prévenir et guérir les surcharges en fer, les espoirs de l’hepcidine. Med Sci (Paris) 2006 ; 22 : 696–698. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.