Free Access
Issue
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 581 - 583
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20153106002
Published online 07 July 2015
  1. Razungles J, Cavaillès V, Jalaguier S, Teyssier C. L’effet Warburg : de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013 ; 29 : 1026–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development 2013 ; 140 : 2535–2547. [CrossRef] [PubMed] [Google Scholar]
  3. Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-coA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015 ; 21 : 392–402. [CrossRef] [PubMed] [Google Scholar]
  4. Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 2012 ; 125 : 5597–5608. [CrossRef] [PubMed] [Google Scholar]
  5. Melcer S, Hezroni H, Rand E, et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat Commun 2012 ; 3 : 910. [CrossRef] [PubMed] [Google Scholar]
  6. Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009 ; 324 : 1076–1080. [CrossRef] [PubMed] [Google Scholar]
  7. Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013 ; 153 : 56–69. [CrossRef] [PubMed] [Google Scholar]
  8. Carey BW, Finley LW, Cross JR, et al. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015 ; 518 : 413–416. [CrossRef] [PubMed] [Google Scholar]
  9. Varum S, Rodrigues AS, Moura MB, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 2011 ; 6 : e20914. [CrossRef] [PubMed] [Google Scholar]
  10. Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011 ; 30 : 4860–4873. [CrossRef] [PubMed] [Google Scholar]
  11. Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011 ; 14 : 264–271. [CrossRef] [PubMed] [Google Scholar]
  12. Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014 ; 159 : 1603–1614. [CrossRef] [PubMed] [Google Scholar]
  13. Mattout A, Meshorer E. Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol 2010 ; 22 : 334–341. [CrossRef] [PubMed] [Google Scholar]
  14. Meissen JK, Yuen BT, Kind T, et al. Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism. PLoS One 2012 ; 7 : e46770. [CrossRef] [PubMed] [Google Scholar]
  15. Wang J, Alexander P, Wu L, et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009 ; 325 : 435–439. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.