Free Access
Med Sci (Paris)
Volume 31, Number 4, Avril 2015
Page(s) 439 - 446
Section M/S Revues
Published online 08 May 2015
  1. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006 ; 29 : 565–598. [CrossRef] [PubMed] [Google Scholar]
  2. Koob G, Kreek MJ. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 2007 ; 164 : 1149–1159. [CrossRef] [PubMed] [Google Scholar]
  3. Gould TJ. Addiction and cognition. Addict Sci Clin Pract 2010 ; 5 : 4–14. [PubMed] [Google Scholar]
  4. Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 2004 ; 44 : 161–179. [CrossRef] [PubMed] [Google Scholar]
  5. Kendler KS, Myers J, Prescott CA. Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence. Arch Gen Psychiatry 2007 ; 64 : 1313–1320. [CrossRef] [PubMed] [Google Scholar]
  6. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011 ; 12 : 623–637. [CrossRef] [PubMed] [Google Scholar]
  7. Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology. London : Allen and Unwin, 1957. [Google Scholar]
  8. Felsenfeld G. A brief history of epigenetics. Cold Spring Harb Perspect Biol 2014 ; 6 : a018200. [CrossRef] [PubMed] [Google Scholar]
  9. Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci 2010 ; 13 : 1319–1323. [CrossRef] [PubMed] [Google Scholar]
  10. Ray-Gallet D, Gerard A, Polo S, Almouzni G. Variations sur le thème du code histone. Med Sci (Paris) 2005 ; 21 : 384–389. [Google Scholar]
  11. Kim DH, Saetrom P, Snove O, Jr, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008 ; 105 : 16230–16235. [CrossRef] [Google Scholar]
  12. Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013 ; 341 : 1237905. [CrossRef] [PubMed] [Google Scholar]
  13. Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci 2009 ; 66 : 596–612. [CrossRef] [PubMed] [Google Scholar]
  14. Wang Y, Leung FC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004 ; 20 : 1170–1177. [CrossRef] [PubMed] [Google Scholar]
  15. LaPlant Q, Vialou V, Covington HE 3rd et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010 ; 13 : 1137–1143. [CrossRef] [PubMed] [Google Scholar]
  16. Pol Bodetto S, Carouge D, Fonteneau M, et al. Cocaine represses protein phosphatase-1Cbeta through DNA methylation and methyl-CpG binding protein-2 recruitment in adult rat brain. Neuropharmacology 2013; 73 : 31–40. [CrossRef] [PubMed] [Google Scholar]
  17. Anier K, Malinovskaja K, Aonurm-Helm A, et al. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 2010 ; 35 : 2450–2461. [CrossRef] [PubMed] [Google Scholar]
  18. Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011 ; 145 : 423–434. [CrossRef] [PubMed] [Google Scholar]
  19. Lewis JD, Meehan RR, Henzel WJ, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992 ; 69 : 905–914. [CrossRef] [PubMed] [Google Scholar]
  20. Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999 ; 23 : 185–188. [CrossRef] [PubMed] [Google Scholar]
  21. Tudor M, Akbarian S, Chen RZ, Jaenisch R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA 2002 ; 99 : 15536–15541. [CrossRef] [Google Scholar]
  22. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998 ; 393 : 386–389. [CrossRef] [PubMed] [Google Scholar]
  23. Adkins NL, Georgel PT. MeCP2: structure and function. Biochem Cell Biol 2011 ; 89 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  24. Lyst MJ, Ekiert R, Ebert DH, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 2013 ; 16 : 898–902. [CrossRef] [PubMed] [Google Scholar]
  25. Deschatrettes E, Jouvert P, Zwiller J. Overexpression of cyclic GMP-dependent protein kinase reduces MeCP2 and HDAC2 expression. Brain Behav 2012 ; 2 : 732–740. [CrossRef] [PubMed] [Google Scholar]
  26. Ausio J, Paz AM, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014 ; 20 : 487–498. [CrossRef] [PubMed] [Google Scholar]
  27. Carouge D, Host L, Aunis D, et al. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis 2010 ; 38 : 414–424. [CrossRef] [PubMed] [Google Scholar]
  28. Adachi M, Monteggia LM. Decoding transcriptional repressor complexes in the adult central nervous system. Neuropharmacology 2014; 80C : 45–52. [CrossRef] [Google Scholar]
  29. Pol Bodetto S, Romieu P, Sartori M, et al. Differential regulation of MeCP2 and PP1 in passive or voluntary administration of cocaine or food. Int J Neuropsychopharmacol 2014; 17 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  30. Skene PJ, Illingworth RS, Webb S, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010 ; 37 : 457–468. [CrossRef] [PubMed] [Google Scholar]
  31. Cassel S, Carouge D, Gensburger C, et al. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 2006 ; 70 : 487–492. [CrossRef] [PubMed] [Google Scholar]
  32. Host L, Dietrich JB, Carouge D, et al. Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition. J Psychopharmacol 2011 ; 25 : 222–229. [CrossRef] [PubMed] [Google Scholar]
  33. Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010 ; 13 : 1120–1127. [CrossRef] [PubMed] [Google Scholar]
  34. Deng JV, Rodriguiz RM, Hutchinson AN, et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci 2010 ; 13 : 1128–1136. [CrossRef] [PubMed] [Google Scholar]
  35. Lacoste N, Cote J. Le code épigénétique des histones. Med Sci (Paris) 2003 ; 19 : 955–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Kumar A, Choi KH, Renthal W, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005 ; 48 : 303–314. [CrossRef] [PubMed] [Google Scholar]
  37. Shibasaki M, Mizuno K, Kurokawa K, Ohkuma S. L-type voltage-dependent calcium channels facilitate acetylation of histone H3 through PKCgamma phosphorylation in mice with methamphetamine-induced place preference. J Neurochem 2011 ; 118 : 1056–1066. [CrossRef] [PubMed] [Google Scholar]
  38. Pandey SC, Ugale R, Zhang H, et al. Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 2008 ; 28 : 3729–3737. [CrossRef] [PubMed] [Google Scholar]
  39. Renthal W, Maze I, Krishnan V, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007 ; 56 : 517–529. [CrossRef] [PubMed] [Google Scholar]
  40. Dietrich JB, Takemori H, Grosch-Dirrig S, et al. Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5. Synapse 2012 ; 66 : 61–70. [CrossRef] [PubMed] [Google Scholar]
  41. Renthal W, Kumar A, Xiao G, et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 2009 ; 62 : 335–348. [CrossRef] [PubMed] [Google Scholar]
  42. Romieu P, Host L, Gobaille S, et al. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 2008 ; 28 : 9342–9348. [CrossRef] [PubMed] [Google Scholar]
  43. Warnault V, Darcq E, Levine A, et al. Chromatin remodeling: a novel strategy to control excessive alcohol drinking. Transl Psychiatry 2013 ; 3 : e231. [CrossRef] [PubMed] [Google Scholar]
  44. Malvaez M, Sanchis-Segura C, Vo D, et al. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 2010 ; 67 : 36–43. [CrossRef] [PubMed] [Google Scholar]
  45. Pastor V, Host L, Zwiller J, Bernabeu R. Histone deacetylase inhibition decreases preference without affecting aversion for nicotine. J Neurochem 2011 ; 116 : 636–645. [CrossRef] [PubMed] [Google Scholar]
  46. Legastelois R, Botia B, Naassila M. Blockade of ethanol-induced behavioral sensitization by sodium butyrate: descriptive analysis of gene regulations in the striatum. Alcohol Clin Exp Res 2013 ; 37 : 1143–1153. [CrossRef] [PubMed] [Google Scholar]
  47. Romieu P, Deschatrettes E, Host L, et al. The inhibition of histone deacetylases reduces the reinstatement of cocaine-seeking behavior in rats. Curr Neuropharmacol 2011 ; 9 : 21–25. [CrossRef] [PubMed] [Google Scholar]
  48. Sun J, Wang L, Jiang B, et al. The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine- and sucrose-maintained self-administration in rats. Neurosci Lett 2008 ; 441 : 72–76. [CrossRef] [PubMed] [Google Scholar]
  49. Sanchis-Segura C, Lopez-Atalaya JP, Barco A. Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition. Neuropsychopharmacology 2009 ; 34 : 2642–2654. [CrossRef] [PubMed] [Google Scholar]
  50. Shen HY, Kalda A, Yu L, et al. Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience 2008 ; 157 : 644–655. [CrossRef] [PubMed] [Google Scholar]
  51. Tesone-Coelho C, Morel LJ, Bhatt J, et al. Vulnerability to opiate intake in maternally deprived rats: implication of MeCP2 and of histone acetylation. Addict Biol 2015 ; 20 : 120–131. [CrossRef] [PubMed] [Google Scholar]
  52. Anne M, Sammartino D, Barginear MF, Budman D. Profile of panobinostat and its potential for treatment in solid tumors: an update. Onco Targets Ther 2013 ; 6 : 1613–1624. [CrossRef] [PubMed] [Google Scholar]
  53. Gorwood P. Les addictions sous l’angle de la génétique. Med Sci (Paris) 2015 ; 31 : 432–438. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Morange M. Quelle place pour l’épigénétique ?. Med Sci (Paris) 2005 ; 21 : 367–369. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Mahfoudhi E, Secardin L, Scourzic L, et al. Propriétés et rôles biologiques des protéines TET au cours du développement et de l’hématopoïèse. Med Sci (Paris) 2015 ; 31 : 268–274. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. La Herve D. drogue : une histoire d’histone ? Med Sci (Paris) 2010 ; 26 : 568–571. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.