Free Access
Issue
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 203 - 208
Section Prix Nobel 2014
DOI https://doi.org/10.1051/medsci/20153102018
Published online 05 March 2015
  1. Tolman EC. Cognitive maps in rats and men. Psychol Rev 1948 ; 55 : 189–208. [Google Scholar]
  2. Tolman EC, Honzik CH. Introduction and removal of reward, and maze performance in rats. Univ Calif Publ Psychol 1930 ; 4 : 257–275. [Google Scholar]
  3. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol 1976 ; 51 : 78–109. [CrossRef] [PubMed] [Google Scholar]
  4. J. O’Keefe DHC, O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 1978 ; 31 : 573–590. [PubMed] [Google Scholar]
  5. Quirk GJ, Muller RU, Kubie JL. The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J Neurophysiol 1990 ; 10 : 2008–2017. [Google Scholar]
  6. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993 ; 3 : 317–330. [Google Scholar]
  7. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969 ; 26 : 407–418. [CrossRef] [PubMed] [Google Scholar]
  8. Eichenbaum H, Dudchenko P, Wood E, et al. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 1999 ; 23 : 209–226. [CrossRef] [PubMed] [Google Scholar]
  9. O’Keefe J.. Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 1999 ; 9 : 352–364. [CrossRef] [PubMed] [Google Scholar]
  10. MacDonald CJ, Lepage KQ, Eden UT, et al. Hippocampal time cells bridge the gap in memory for discontiguous events. Neuron 2011 ; 71 : 737–749. [CrossRef] [PubMed] [Google Scholar]
  11. Kraus B, Robinson R, White J, et al. Hippocampal time cells: time versus path Integration. Neuron 2013 ; 78 : 1090–1101. [CrossRef] [PubMed] [Google Scholar]
  12. Cabral HO, Vinck M, Fouquet C, et al. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 2014 ; 81 : 402–415. [CrossRef] [PubMed] [Google Scholar]
  13. Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 2002 ; 296 : 2243–2246. [Google Scholar]
  14. Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex. Science 2004 ; 305 : 1258–1264. [CrossRef] [PubMed] [Google Scholar]
  15. Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature 2005 ; 436 : 801–806. [CrossRef] [PubMed] [Google Scholar]
  16. Fyhn M, Hafting T, Treves A, et al. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 2007 ; 446 : 190–194. [CrossRef] [PubMed] [Google Scholar]
  17. Muller RU, Ranck JB, Taube JS. Head direction cells: properties and functional significance. Curr Opin Neurobiol 1996 ; 6 : 196–206. [CrossRef] [PubMed] [Google Scholar]
  18. Solstad T, Boccara CN, Kropff E, et al. Representation of geometric borders in the entorhinal cortex. Science 2008 ; 322 : 1865–1868. [CrossRef] [PubMed] [Google Scholar]
  19. Savelli F, Yoganarasimha D, Knierim JJ. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 2008 ; 18 : 1270–1282. [CrossRef] [PubMed] [Google Scholar]
  20. Sargolini F, Fyhn M, Hafting T, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 2006 ; 312 : 758–762. [CrossRef] [PubMed] [Google Scholar]
  21. Sasaki T, Leutgeb S LJ. Spatial and memory circuits in the medial entorhinal cortex. Curr Opin Neurobiol 2014; 32C : 16–23. [PubMed] [Google Scholar]
  22. Langston RF, Ainge JA, Couey JJ, et al. Development of the spatial representation system in the rat. Science 2010 ; 328 : 1576–1580. [CrossRef] [PubMed] [Google Scholar]
  23. Wills TJ, Cacucci F, Burgess N, et al. Development of the hippocampal cognitive map in preweanling rats. Science 2010 ; 328 : 1573–1576. [CrossRef] [PubMed] [Google Scholar]
  24. Bjerknes TL, Moser EI, Moser MB. Representation of geometric borders in the developing rat. Neuron 2014 ; 82 : 71–78. [CrossRef] [PubMed] [Google Scholar]
  25. Brandon M, Koenig J, Leutgeb J, et al. New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron 2014 ; 82 : 789–796. [CrossRef] [PubMed] [Google Scholar]
  26. Bonnevie T, Dunn B, Fyhn M, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci 2013 ; 16 : 309–317. [CrossRef] [PubMed] [Google Scholar]
  27. Ekstrom AD, Kahana MJ, Caplan JB, et al. Cellular networks underlying human spatial navigation. Nature 2003 ; 425 : 184–188. [CrossRef] [PubMed] [Google Scholar]
  28. Doeller CF, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature 2010 ; 463 : 657–661. [CrossRef] [PubMed] [Google Scholar]
  29. Jacobs J, Weidemann CT, Miller JF, et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 2013 ; 16 : 1188–1190. [CrossRef] [PubMed] [Google Scholar]
  30. Chen G, King JA, Burgess N, O’Keefe J. How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci USA 2013 ; 110 : 378–383. [CrossRef] [Google Scholar]
  31. Ravassard P, Kees A, Willers B, et al. Multisensory control of hippocampal spatiotemporal selectivity. Science 2013 ; 340 : 1342–1346. [CrossRef] [PubMed] [Google Scholar]
  32. Rondi-Reig L, Paradis AL, Lefort JM, et al. How the cerebellum may monitor sensory information for spatial representation. Front Syst Neurosci 2014 ; 8 : 205. [CrossRef] [PubMed] [Google Scholar]
  33. Rochefort C, Arabo A, Andre M, et al. Cerebellum shapes hippocampal spatial code. Science 2011 ; 334 : 385–389. [CrossRef] [PubMed] [Google Scholar]
  34. Jacob PY. Rôle du cortex entorhinal médian dans le traitement des informations spatiales : études comportementales et électrophysiologiques. Université Aix-Marseille, Thèse, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.