Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 2, Février 2015
Page(s) 203 - 208
Section Prix Nobel 2014
DOI https://doi.org/10.1051/medsci/20153102018
Publié en ligne 5 mars 2015
  1. Tolman EC. Cognitive maps in rats and men. Psychol Rev 1948 ; 55 : 189–208. [CrossRef] [PubMed] [Google Scholar]
  2. Tolman EC, Honzik CH. Introduction and removal of reward, and maze performance in rats. Univ Calif Publ Psychol 1930 ; 4 : 257–275. [Google Scholar]
  3. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol 1976 ; 51 : 78–109. [CrossRef] [PubMed] [Google Scholar]
  4. J. O’Keefe DHC, O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 1978 ; 31 : 573–590. [PubMed] [Google Scholar]
  5. Quirk GJ, Muller RU, Kubie JL. The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J Neurophysiol 1990 ; 10 : 2008–2017. [Google Scholar]
  6. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993 ; 3 : 317–330. [CrossRef] [PubMed] [Google Scholar]
  7. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969 ; 26 : 407–418. [CrossRef] [PubMed] [Google Scholar]
  8. Eichenbaum H, Dudchenko P, Wood E, et al. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 1999 ; 23 : 209–226. [CrossRef] [PubMed] [Google Scholar]
  9. O’Keefe J.. Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 1999 ; 9 : 352–364. [CrossRef] [PubMed] [Google Scholar]
  10. MacDonald CJ, Lepage KQ, Eden UT, et al. Hippocampal time cells bridge the gap in memory for discontiguous events. Neuron 2011 ; 71 : 737–749. [CrossRef] [PubMed] [Google Scholar]
  11. Kraus B, Robinson R, White J, et al. Hippocampal time cells: time versus path Integration. Neuron 2013 ; 78 : 1090–1101. [CrossRef] [PubMed] [Google Scholar]
  12. Cabral HO, Vinck M, Fouquet C, et al. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 2014 ; 81 : 402–415. [CrossRef] [PubMed] [Google Scholar]
  13. Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 2002 ; 296 : 2243–2246. [CrossRef] [PubMed] [Google Scholar]
  14. Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex. Science 2004 ; 305 : 1258–1264. [CrossRef] [PubMed] [Google Scholar]
  15. Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature 2005 ; 436 : 801–806. [CrossRef] [PubMed] [Google Scholar]
  16. Fyhn M, Hafting T, Treves A, et al. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 2007 ; 446 : 190–194. [CrossRef] [PubMed] [Google Scholar]
  17. Muller RU, Ranck JB, Taube JS. Head direction cells: properties and functional significance. Curr Opin Neurobiol 1996 ; 6 : 196–206. [CrossRef] [PubMed] [Google Scholar]
  18. Solstad T, Boccara CN, Kropff E, et al. Representation of geometric borders in the entorhinal cortex. Science 2008 ; 322 : 1865–1868. [CrossRef] [PubMed] [Google Scholar]
  19. Savelli F, Yoganarasimha D, Knierim JJ. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 2008 ; 18 : 1270–1282. [CrossRef] [PubMed] [Google Scholar]
  20. Sargolini F, Fyhn M, Hafting T, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 2006 ; 312 : 758–762. [CrossRef] [PubMed] [Google Scholar]
  21. Sasaki T, Leutgeb S LJ. Spatial and memory circuits in the medial entorhinal cortex. Curr Opin Neurobiol 2014; 32C : 16–23. [PubMed] [Google Scholar]
  22. Langston RF, Ainge JA, Couey JJ, et al. Development of the spatial representation system in the rat. Science 2010 ; 328 : 1576–1580. [CrossRef] [PubMed] [Google Scholar]
  23. Wills TJ, Cacucci F, Burgess N, et al. Development of the hippocampal cognitive map in preweanling rats. Science 2010 ; 328 : 1573–1576. [CrossRef] [PubMed] [Google Scholar]
  24. Bjerknes TL, Moser EI, Moser MB. Representation of geometric borders in the developing rat. Neuron 2014 ; 82 : 71–78. [CrossRef] [PubMed] [Google Scholar]
  25. Brandon M, Koenig J, Leutgeb J, et al. New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron 2014 ; 82 : 789–796. [CrossRef] [PubMed] [Google Scholar]
  26. Bonnevie T, Dunn B, Fyhn M, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci 2013 ; 16 : 309–317. [CrossRef] [PubMed] [Google Scholar]
  27. Ekstrom AD, Kahana MJ, Caplan JB, et al. Cellular networks underlying human spatial navigation. Nature 2003 ; 425 : 184–188. [CrossRef] [PubMed] [Google Scholar]
  28. Doeller CF, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature 2010 ; 463 : 657–661. [CrossRef] [PubMed] [Google Scholar]
  29. Jacobs J, Weidemann CT, Miller JF, et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 2013 ; 16 : 1188–1190. [CrossRef] [PubMed] [Google Scholar]
  30. Chen G, King JA, Burgess N, O’Keefe J. How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci USA 2013 ; 110 : 378–383. [CrossRef] [Google Scholar]
  31. Ravassard P, Kees A, Willers B, et al. Multisensory control of hippocampal spatiotemporal selectivity. Science 2013 ; 340 : 1342–1346. [CrossRef] [PubMed] [Google Scholar]
  32. Rondi-Reig L, Paradis AL, Lefort JM, et al. How the cerebellum may monitor sensory information for spatial representation. Front Syst Neurosci 2014 ; 8 : 205. [CrossRef] [PubMed] [Google Scholar]
  33. Rochefort C, Arabo A, Andre M, et al. Cerebellum shapes hippocampal spatial code. Science 2011 ; 334 : 385–389. [CrossRef] [PubMed] [Google Scholar]
  34. Jacob PY. Rôle du cortex entorhinal médian dans le traitement des informations spatiales : études comportementales et électrophysiologiques. Université Aix-Marseille, Thèse, 2014. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.