Free Access
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1144 - 1151
Section M/S Revues
Published online 24 December 2014
  1. Carbonnelle E, Nassif X. Utilisation en routine du MALDI-TOF-MS pour l’identification des pathogènes en microbiologie médicale. Med Sci (Paris) 2011 ; 27 : 882–888. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Caboche S, Audebert C, Hot D. High-throughput sequencing, a versatile weapon to supporte genome-based diagnosis in infectious diseases: applications to clinical bacteriology. Pathogens 2014 ; 3 : 258–279. [CrossRef] [PubMed] [Google Scholar]
  3. Ehrlich GD, Post JC. The time is now for gene- and genome-based bacterial diagnostics : You say you want a revolution. JAMA Intern Med 2013 ; 173 : 1405–1406. [CrossRef] [PubMed] [Google Scholar]
  4. Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 2013 ; 10 : e1001387. [CrossRef] [PubMed] [Google Scholar]
  5. Boers SA, van der Reijden WA, Jansen R. High-throughput multilocus sequence typing: bringing molecular typing to the next level. PLoS One 2012 ; 7 : e39630. [CrossRef] [PubMed] [Google Scholar]
  6. Nocq J, Celton M, Gendron P, et al. Harnessing virtual machines to simplify next-generation DNA sequencing analysis. Bioinformatics 2013 ; 29 : 2075–2083. [CrossRef] [PubMed] [Google Scholar]
  7. Carrico JA, Sabat AJ, Friedrich AW, Ramirez M., Bioinformatics in bacterial molecular epidemiology, public health: databases, tools, the next-generation sequencing revolution. Euro Surveill 2013 ; 18 : 20382. [PubMed] [Google Scholar]
  8. Clark TG, Mallard K, Coll F, et al. Elucidating emergence, transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One 2013 ; 8 : e83012. [CrossRef] [PubMed] [Google Scholar]
  9. Daum LT, Fischer GW, Sromek J, et al. Characterization of multi-drug resistant Mycobacterium tuberculosis from immigrants residing in the USA using Ion Torrent full-gene sequencing. Epidemiol Infect 2014 ; 142 : 1328–1333. [CrossRef] [PubMed] [Google Scholar]
  10. Oyola SO, Gu Y, Manske M, et al. Efficient depletion of host DNA contamination in malaria clinical sequencing. J Clin Microbiol 2013 ; 51 : 745–751. [CrossRef] [PubMed] [Google Scholar]
  11. Seth-Smith HM, Harris SR, Skilton RJ, et al. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 2013 ; 23 : 855–866. [CrossRef] [PubMed] [Google Scholar]
  12. Pallen MJ. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology 2014 ; 27 : 1–7. [Google Scholar]
  13. Loman NJ, Constantinidou C, Christner M, et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 2013 ; 309 : 1502–1510. [CrossRef] [PubMed] [Google Scholar]
  14. Boissinot M, Bergeron MG. Génomique et bioterrorisme. Med Sci (Paris) 2003 19 : 967–971. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Pritchard L, Holden NJ, Bielaszewska M, et al. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains. PLoS One 2012 ; 7 : e34498. [CrossRef] [PubMed] [Google Scholar]
  16. Chen C, Zhang W, Zheng H, et al. Minimum core genome sequence typing of bacterial pathogens : a unified approach for clinical and public health microbiology. J Clin Microbiol 2013 ; 51 : 2582–2591. [CrossRef] [PubMed] [Google Scholar]
  17. Bengoechea JA. Infection systems biology: from reactive to proactive (P4) medicine. Int Microbiol 2012 ; 15 : 55–60. [PubMed] [Google Scholar]
  18. Eyre DW, Golubchik T, Gordon NC, et al. A pilot study of rapid benchtop sequencing of Staphylococcus aureus, Clostridium difficile for outbreak detection, surveillance. BMJ Open 2012 ; 2 : e001124. [PubMed] [Google Scholar]
  19. Sherry NL, Porter JL, Seemann T, et al. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol 2013 ; 51 : 1396–1401. [CrossRef] [PubMed] [Google Scholar]
  20. Harris SR, Feil EJ, Holden MT, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010 ; 327 : 469–474. [CrossRef] [PubMed] [Google Scholar]
  21. Jonges M, Welkers MR, Jeeninga RE, et al. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing. J Virol 2014 ; 88 : 1694–1702. [CrossRef] [PubMed] [Google Scholar]
  22. Salipante SJ, Sengupta DJ, Rosenthal C, et al. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 2013 ; 8 : e65226. [CrossRef] [PubMed] [Google Scholar]
  23. McLean JS, Lombardo MJ, Ziegler MG, et al. Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res 2013 ; 23 : 867–877. [CrossRef] [PubMed] [Google Scholar]
  24. Bernardo P, Albina E, Eloit M, Roumagnac P. Métagénomique virale et pathologie. Med Sci (Paris) 2013 ; 29 : 501–508. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.