Free Access
Med Sci (Paris)
Volume 30, Novembre 2014
2e colloque de l’ITMO Santé publique – Médecine « personnalisée » et innovations biomédicales : enjeux de santé publique, économiques, éthiques et sociaux (Paris, 5 décembre 2013)
Page(s) 27 - 31
Section Session 3. La médecine personnalisée : aggravatrice ou réductrice des inégalités de santé ?
Published online 17 November 2014
  1. Regroupement en soins de santé personnalisés au Québec. Les soins de santé personnalisés : une opportunité unique d’innovation pour le Québec. Montréal : Regroupement en soins de santé personnalisés au Québec, 2013. [Google Scholar]
  2. Claeys A, Vialatte JS. Office parlementaire des choix scientifiques et techniques. Les progrès de la génétique : vers une médecine de précision ? Les enjeux scientifiques, technologiques, sociaux et éthiques de la médecine personnalisée. Office parlementaire des choix scientifiques et techniques, 2014, rapport accessible à [Google Scholar]
  3. Kalia M. Personalized oncology: recent advances and future challenges. Metabolism 2013 ; 62 : S11–S14. [CrossRef] [PubMed] [Google Scholar]
  4. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. Nat Biotechnol 2012 ; 29 : 613–624. [Google Scholar]
  5. Drug Labels. PharmGKB, 2014, disponible à [Google Scholar]
  6. Hedden L, O’Reilly S, Lohrisch C, et al. Assessing the real-world cost-effectiveness of adjuvant Trastuzumab in HER-2/neu positive breast cancer. Oncologist 2012 ; 17 : 164–171. [CrossRef] [PubMed] [Google Scholar]
  7. Epstein RS, Moyer TP, Aubert RE, et al. Warfarin genotyping reduces hospitalization rates. Results from the MM-WES (Medco-Mayo warfarin effectiveness study). J Am Coll Cardiol 2010 ; 55 : 2804–2812. [CrossRef] [PubMed] [Google Scholar]
  8. Antoniou AC, Cunningham AP, Peto J, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancer: updates and extensions. Br J Cancer 2008 ; 98 : 1457–1466. [CrossRef] [PubMed] [Google Scholar]
  9. Sanseau P, Agarwal P, Barnes MR, et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol 2012 ; 30 : 317–320. [CrossRef] [PubMed] [Google Scholar]
  10. Lesko LJ, Johnson JA. Academia at the crossroads: education and training in pharmacogenomics. Pers Med 2012 ; 9 : 497–506. [CrossRef] [Google Scholar]
  11. Caulfield T, Condit C. Science and the sources of hype. Public Health Genomics 2012 ; 15 : 209–217. [CrossRef] [PubMed] [Google Scholar]
  12. Caulfield T, Fullerton S, Ali-Khan SE, et al. Race, ancestry in biomedical research: exploring the challenges. Genome Med 2009 ; 1 : 8. [CrossRef] [PubMed] [Google Scholar]
  13. Lee SSJ. Racializing drug design: Implications of pharmacogenomics for health disparities. Am J Public Health 2005 ; 95 : 2133–2138. [CrossRef] [PubMed] [Google Scholar]
  14. Tayo BO, Teil M, Tong L, et al. Genetic background of patients from a university medical center in Manhattan: Implications for personalized medicine. PLoS One 2011 ; 6 : 5. [Google Scholar]
  15. Mozersky J., Risky genes: genetics, breast cancer and Jewish identity. London : Routledge 2012. [Google Scholar]
  16. Rusert B, Royal CDM. Grassroots marketing in a global era: more lessons from BiDil. J Law Med Ethics 2011 ; 39 : 79–90. [CrossRef] [PubMed] [Google Scholar]
  17. Burke W, Burton H, Hall A, et al. Extending the reach of public health genomics: what should be the agenda for public health in an era of genome-based and personalized medicine ?. Genet Med 2010 ; 12 : 785–791. [CrossRef] [PubMed] [Google Scholar]
  18. Knoppers BM. Genomics: from persons to population and back again. Genome Res 2013 ; 56 : 537–539. [CrossRef] [Google Scholar]
  19. Toronto international data release workshop authors. Pre-publication data sharing. Nature 2009 ; 461 : 168–170. [CrossRef] [PubMed] [Google Scholar]
  20. Joly Y, Dove ES, Knoppers BM, et al. Data sharing in the post-genomic world: the experience of the International cancer genome consortium (ICGC) data access compliance office (DACO). PloS Comput Biol 2012 ; 8 : 7. [CrossRef] [Google Scholar]
  21. European Commission H2020 (2014). H2020-TWINNING-2015. Retrieved October 03, 2014, from [Google Scholar]
  22. Joly Y. Open source approaches in biotechnology: utopia revisited. Maine Law Review 2007 ; 59 : 385–406. [Google Scholar]
  23. Dove ES, Joly Y, Knoppers BM. Power to the people: a wiki-governance model for biobanks. Genome Biol 2012 ; 13 : 158. [CrossRef] [PubMed] [Google Scholar]
  24. Lambertson K, Terry S. Free the data. Genet Test Mol Biomarkers 2014 ; 18 : 1–2. [CrossRef] [PubMed] [Google Scholar]
  25. Poland GA, Kennedy RB, Ovsyannikova IG. Vaccinomics personalized vaccinology: Is science leading us toward a new path of directed vaccine development, discovery? PLoS Pathog 2011 ; 7 : 12. [CrossRef] [Google Scholar]
  26. Rappuoli A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 2011 ; 473 : 463–469. [CrossRef] [PubMed] [Google Scholar]
  27. Castle JC, Kreiter S, Diekmann J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res 2012 ; 72 : 1081–1091. [CrossRef] [PubMed] [Google Scholar]
  28. Daar AS, Thorsteinsdóttir H, Martin DK, et al. Top ten biotechnologies for improving health in developing countries. Nat Genet 2002 ; 32 : 229–232. [CrossRef] [PubMed] [Google Scholar]
  29. Joly Y, McClellan KA, Knoppers BM. Personalized vaccines and public health genomics: anticipating and monitoring the ELSIs. Pharmgenomics Pers Med 2010 ; 8 : 4–6. [CrossRef] [Google Scholar]
  30. Caplan AL. Without an adequate ethical infrastructure, the road to personalized medicine will be rocky at best. Clin Pharmacol Ther 2012 ; 92 : 411–412. [CrossRef] [PubMed] [Google Scholar]
  31. Dickenson D., Me medicine vs. We medicine reclaiming biotechnology for the common good. New York : Columbia University Press, 2013. [Google Scholar]
  32. National academy of sciences. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington : National Academy Press, 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.