Free Access
Issue
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 996 - 1003
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011014
Published online 10 November 2014
  1. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010 ; 11 : 331–344. [CrossRef] [PubMed] [Google Scholar]
  2. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed] [Google Scholar]
  3. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 2009 ; 151C : 281–295. [CrossRef] [PubMed] [Google Scholar]
  4. Shenje LT, Andersen P, Halushka MK, et al. Mutations in Alstrom protein impair terminal differentiation of cardiomyocytes. Nat Commun 2014 ; 5 : 3416. [CrossRef] [PubMed] [Google Scholar]
  5. Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med 2009 ; 11 : 386–402. [CrossRef] [PubMed] [Google Scholar]
  6. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998 ; 95 : 829–837. [CrossRef] [PubMed] [Google Scholar]
  7. Brueckner M. Heterotaxia, congenital heart disease, and primary ciliary dyskinesia. Circulation 2007 ; 115 : 2793–2795. [CrossRef] [PubMed] [Google Scholar]
  8. Rash JE, Shay JW, Biesele JJ. Cilia in cardiac differentiation. J Ultrastruct Res 1969 ; 29 : 470–484. [CrossRef] [PubMed] [Google Scholar]
  9. Myklebust R, Engedal H, Saetersdal TS, Ulstein M. Primary 9+0 cilia in the embryonic and the adult human heart. Anat Embryol 1977 ; 151 : 127–139. [CrossRef] [Google Scholar]
  10. Gerhardt C, Lier JM, Kuschel S, Rüther U., The ciliary protein Ftm is required for ventricular wall, septal development. PLoS One 2013 ; 8 : e57545. [CrossRef] [PubMed] [Google Scholar]
  11. Slough J, Cooney L, Brueckner M. Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn 2008 ; 237 : 2304–2314. [CrossRef] [PubMed] [Google Scholar]
  12. Van der Heiden K, Groenendijk BC, Hierck BP, et al. Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 2006 ; 235 : 19–28. [CrossRef] [PubMed] [Google Scholar]
  13. Lu CJ, Du H, Wu J, et al. Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 2008 ; 31 : 171–184. [CrossRef] [PubMed] [Google Scholar]
  14. Babu D, Roy S., Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 2013 ; 3 : 130052. [CrossRef] [PubMed] [Google Scholar]
  15. Ferrante MI, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006 ; 38 : 112–117. [CrossRef] [PubMed] [Google Scholar]
  16. Takeda S, Yonekawa Y, Tanaka Y, et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 1999 ; 145 : 825–836. [CrossRef] [PubMed] [Google Scholar]
  17. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  18. Gray RS, Abitua PB, Wlodarczyk BJ, et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009 ; 11 : 1225–1232. [CrossRef] [PubMed] [Google Scholar]
  19. Cui C, Chatterjee B, Francis D, et al. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011 ; 4 : 43–56. [CrossRef] [PubMed] [Google Scholar]
  20. Kinzel D, Boldt K, Davis EE, et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell 2010 ; 19 : 66–77. [CrossRef] [PubMed] [Google Scholar]
  21. Francis RJ, Christopher A, Devine WA, et al. Congenital heart disease and the specification of left-right asymmetry. Am J Physiol Heart Circ Physiol 2012 ; 302 : H2102–H2111. [CrossRef] [PubMed] [Google Scholar]
  22. Manning DK, Sergeev M, van Heesbeen RG, et al. Loss of the ciliary kinase Nek8 causes left-right asymmetry defects. J Am Soc Nephrol 2013 ; 24 : 100–112. [CrossRef] [PubMed] [Google Scholar]
  23. Nozawa YI, Lin C, Chuang PT. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 2013 ; 23 : 429–437. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 2001 ; 106 : 781–792. [CrossRef] [PubMed] [Google Scholar]
  25. Byrd N, Becker S, Maye P, et al. Hedgehog is required for murine yolk sac angiogenesis. Development 2002 ; 129 : 361–372. [PubMed] [Google Scholar]
  26. Hoffmann AD, Peterson MA, Friedland-Little JM, et al. Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 2009 ; 136 : 1761–1770. [CrossRef] [PubMed] [Google Scholar]
  27. Goddeeris MM, Rho S, Petiet A, et al. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 2008 ; 135 : 1887–1895. [CrossRef] [PubMed] [Google Scholar]
  28. Washington Smoak I, Byrd NA, Abu-Issa R, et al. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 2005 ; 283 : 357–372. [CrossRef] [PubMed] [Google Scholar]
  29. Lin L, Bu L, Cai CL, et al. Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev Biol 2006 ; 295 : 756–763. [CrossRef] [PubMed] [Google Scholar]
  30. Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 2009 ; 330 : 305–317. [CrossRef] [PubMed] [Google Scholar]
  31. Clement CA, Kristensen SG, Møllgård K, et al. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009 ; 122 : 3070–3082. [CrossRef] [PubMed] [Google Scholar]
  32. Willaredt MA, Gorgas K, Gardner HA, Tucker KL., Multiple essential roles for primary cilia in heart development. Cilia 2012 ; 1 : 23. [CrossRef] [PubMed] [Google Scholar]
  33. Keady BT, Samtani R, Tobita K, et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell 2012 ; 22 : 940–951. [CrossRef] [PubMed] [Google Scholar]
  34. Pusapati GV, Hughes CE, Dorn KV, et al. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell 2014 ; 28 : 483–496. [CrossRef] [PubMed] [Google Scholar]
  35. Lavine KJ, White AC, Park C, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 2006 ; 20 : 1651–1666. [CrossRef] [PubMed] [Google Scholar]
  36. Lavine KJ, Schmid GJ, Smith CS, Ornitz DM. Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn 2008 ; 237 : 713–724. [CrossRef] [PubMed] [Google Scholar]
  37. Zhou J. Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 2009 ; 71 : 83–113. [CrossRef] [PubMed] [Google Scholar]
  38. Boulter C, Mulroy S, Webb S, et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci USA 2001 ; 98 : 12174–12179. [CrossRef] [Google Scholar]
  39. Wu G, Markowitz GS, Li L, et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 2000 ; 24 : 75–78. [CrossRef] [PubMed] [Google Scholar]
  40. Kurbegovic A, Côté O, Couillard M, et al. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet 2010 ; 19 : 1174–1189. [CrossRef] [PubMed] [Google Scholar]
  41. Garcia-Gonzalez MA, Outeda P, Zhou Q, et al. Pkd1, Pkd2 are required for normal placental development. PLoS One 2010 ; 5 : e12821. [CrossRef] [PubMed] [Google Scholar]
  42. Hassane S, Claij N, Jodar M, et al. Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Lab Invest 2011 ; 91 : 24–32. [CrossRef] [PubMed] [Google Scholar]
  43. Clement CA, Ajbro KD, Koefoed K, et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 2013 ; 3 : 1806–1814. [CrossRef] [PubMed] [Google Scholar]
  44. Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014 ; 141 : 1427–1441. [CrossRef] [PubMed] [Google Scholar]
  45. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Chennen K, Scerbo MJ, Dollfus H, et al. BBS : cils et obésité ; de la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Pacès-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Taulet N, Delaval B. De nouvelles fonctions extraciliaires pour les protéines ciliaires. Quelles conséquences sur l’apparition de ciliopathies ? Med Sci (Paris) 2014 ; 30 : 1040–1050. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.