Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 996 - 1003
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011014
Publié en ligne 10 novembre 2014
  1. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010 ; 11 : 331–344. [CrossRef] [PubMed]
  2. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed]
  3. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 2009 ; 151C : 281–295. [CrossRef] [PubMed]
  4. Shenje LT, Andersen P, Halushka MK, et al. Mutations in Alstrom protein impair terminal differentiation of cardiomyocytes. Nat Commun 2014 ; 5 : 3416. [CrossRef] [PubMed]
  5. Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med 2009 ; 11 : 386–402. [CrossRef] [PubMed]
  6. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998 ; 95 : 829–837. [CrossRef] [PubMed]
  7. Brueckner M. Heterotaxia, congenital heart disease, and primary ciliary dyskinesia. Circulation 2007 ; 115 : 2793–2795. [CrossRef] [PubMed]
  8. Rash JE, Shay JW, Biesele JJ. Cilia in cardiac differentiation. J Ultrastruct Res 1969 ; 29 : 470–484. [CrossRef] [PubMed]
  9. Myklebust R, Engedal H, Saetersdal TS, Ulstein M. Primary 9+0 cilia in the embryonic and the adult human heart. Anat Embryol 1977 ; 151 : 127–139. [CrossRef]
  10. Gerhardt C, Lier JM, Kuschel S, Rüther U., The ciliary protein Ftm is required for ventricular wall, septal development. PLoS One 2013 ; 8 : e57545. [CrossRef] [PubMed]
  11. Slough J, Cooney L, Brueckner M. Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn 2008 ; 237 : 2304–2314. [CrossRef] [PubMed]
  12. Van der Heiden K, Groenendijk BC, Hierck BP, et al. Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 2006 ; 235 : 19–28. [CrossRef] [PubMed]
  13. Lu CJ, Du H, Wu J, et al. Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 2008 ; 31 : 171–184. [CrossRef] [PubMed]
  14. Babu D, Roy S., Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 2013 ; 3 : 130052. [CrossRef] [PubMed]
  15. Ferrante MI, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006 ; 38 : 112–117. [CrossRef] [PubMed]
  16. Takeda S, Yonekawa Y, Tanaka Y, et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 1999 ; 145 : 825–836. [CrossRef] [PubMed]
  17. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed]
  18. Gray RS, Abitua PB, Wlodarczyk BJ, et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009 ; 11 : 1225–1232. [CrossRef] [PubMed]
  19. Cui C, Chatterjee B, Francis D, et al. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011 ; 4 : 43–56. [CrossRef] [PubMed]
  20. Kinzel D, Boldt K, Davis EE, et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell 2010 ; 19 : 66–77. [CrossRef] [PubMed]
  21. Francis RJ, Christopher A, Devine WA, et al. Congenital heart disease and the specification of left-right asymmetry. Am J Physiol Heart Circ Physiol 2012 ; 302 : H2102–H2111. [CrossRef] [PubMed]
  22. Manning DK, Sergeev M, van Heesbeen RG, et al. Loss of the ciliary kinase Nek8 causes left-right asymmetry defects. J Am Soc Nephrol 2013 ; 24 : 100–112. [CrossRef] [PubMed]
  23. Nozawa YI, Lin C, Chuang PT. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 2013 ; 23 : 429–437. [CrossRef] [PubMed]
  24. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 2001 ; 106 : 781–792. [CrossRef] [PubMed]
  25. Byrd N, Becker S, Maye P, et al. Hedgehog is required for murine yolk sac angiogenesis. Development 2002 ; 129 : 361–372. [PubMed]
  26. Hoffmann AD, Peterson MA, Friedland-Little JM, et al. Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 2009 ; 136 : 1761–1770. [CrossRef] [PubMed]
  27. Goddeeris MM, Rho S, Petiet A, et al. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 2008 ; 135 : 1887–1895. [CrossRef] [PubMed]
  28. Washington Smoak I, Byrd NA, Abu-Issa R, et al. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 2005 ; 283 : 357–372. [CrossRef] [PubMed]
  29. Lin L, Bu L, Cai CL, et al. Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev Biol 2006 ; 295 : 756–763. [CrossRef] [PubMed]
  30. Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 2009 ; 330 : 305–317. [CrossRef] [PubMed]
  31. Clement CA, Kristensen SG, Møllgård K, et al. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009 ; 122 : 3070–3082. [CrossRef] [PubMed]
  32. Willaredt MA, Gorgas K, Gardner HA, Tucker KL., Multiple essential roles for primary cilia in heart development. Cilia 2012 ; 1 : 23. [CrossRef] [PubMed]
  33. Keady BT, Samtani R, Tobita K, et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell 2012 ; 22 : 940–951. [CrossRef] [PubMed]
  34. Pusapati GV, Hughes CE, Dorn KV, et al. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell 2014 ; 28 : 483–496. [CrossRef] [PubMed]
  35. Lavine KJ, White AC, Park C, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 2006 ; 20 : 1651–1666. [CrossRef] [PubMed]
  36. Lavine KJ, Schmid GJ, Smith CS, Ornitz DM. Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn 2008 ; 237 : 713–724. [CrossRef] [PubMed]
  37. Zhou J. Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 2009 ; 71 : 83–113. [CrossRef] [PubMed]
  38. Boulter C, Mulroy S, Webb S, et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci USA 2001 ; 98 : 12174–12179. [CrossRef]
  39. Wu G, Markowitz GS, Li L, et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 2000 ; 24 : 75–78. [CrossRef] [PubMed]
  40. Kurbegovic A, Côté O, Couillard M, et al. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet 2010 ; 19 : 1174–1189. [CrossRef] [PubMed]
  41. Garcia-Gonzalez MA, Outeda P, Zhou Q, et al. Pkd1, Pkd2 are required for normal placental development. PLoS One 2010 ; 5 : e12821. [CrossRef] [PubMed]
  42. Hassane S, Claij N, Jodar M, et al. Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Lab Invest 2011 ; 91 : 24–32. [CrossRef] [PubMed]
  43. Clement CA, Ajbro KD, Koefoed K, et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 2013 ; 3 : 1806–1814. [CrossRef] [PubMed]
  44. Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014 ; 141 : 1427–1441. [CrossRef] [PubMed]
  45. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed]
  46. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed]
  47. Chennen K, Scerbo MJ, Dollfus H, et al. BBS : cils et obésité ; de la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed]
  48. Pacès-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed]
  49. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed]
  50. Taulet N, Delaval B. De nouvelles fonctions extraciliaires pour les protéines ciliaires. Quelles conséquences sur l’apparition de ciliopathies ? Med Sci (Paris) 2014 ; 30 : 1040–1050. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.