Free Access
Issue
Med Sci (Paris)
Volume 30, Number 10, Octobre 2014
Page(s) 882 - 888
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143010015
Published online 14 October 2014
  1. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 2013 ; 85 : 1219–1226. [CrossRef] [PubMed] [Google Scholar]
  2. Dempke WC, Heinemann V. Resistance to EGF-R (erbB-1) and VEGF-R modulating agents. Eur J Cancer 2009 ; 45 : 1117–1128. [CrossRef] [PubMed] [Google Scholar]
  3. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002 ; 2 : 48–58. [CrossRef] [PubMed] [Google Scholar]
  4. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004 ; 5 : 429–441. [CrossRef] [PubMed] [Google Scholar]
  5. Arimoto K, Fukuda H, Imajoh-Ohmi S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008 ; 10 : 1324–1332. [CrossRef] [PubMed] [Google Scholar]
  6. Fournier MJ, Coudert L, Mellaoui S, et al. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013 ; 33 : 2285–2301. [CrossRef] [PubMed] [Google Scholar]
  7. Fournier MJ, Gareau C, Mazroui R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int 2010 ; 10 : 12. [CrossRef] [PubMed] [Google Scholar]
  8. Gareau C, Fournier MJ, Filion C, et al. p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011 ; 6 : e20254. [CrossRef] [PubMed] [Google Scholar]
  9. Eisinger-Mathason TS, Andrade J, Groehler AL, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008 ; 31 : 722–736. [CrossRef] [PubMed] [Google Scholar]
  10. Kim WJ, Back SH, Kim V, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005 ; 25 : 2450–2462. [CrossRef] [PubMed] [Google Scholar]
  11. Kedersha NL, Gupta M, Li W, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999 ; 147 : 1431–1442. [CrossRef] [PubMed] [Google Scholar]
  12. Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 2007 ; 21 : 3381–3394. [CrossRef] [PubMed] [Google Scholar]
  13. McInerney GM, Kedersha NL, Kaufman RJ, et al. Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol Biol Cell 2005 ; 16 : 3753–3763. [CrossRef] [PubMed] [Google Scholar]
  14. Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 2006 ; 34 : 7–11. [CrossRef] [PubMed] [Google Scholar]
  15. Kedersha N, Chen S, Gilks N, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002 ; 13 : 195–210. [CrossRef] [PubMed] [Google Scholar]
  16. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 2013 ; 70 : 3493–3511. [CrossRef] [PubMed] [Google Scholar]
  17. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005 ; 6 : 318–327. [CrossRef] [PubMed] [Google Scholar]
  18. McEwen E, Kedersha N, Song B, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005 ; 280 : 16925–16933. [CrossRef] [PubMed] [Google Scholar]
  19. Chefalo PJ, Oh J, Rafie-Kolpin M, et al. Heme-regulated eIF-2alpha kinase purifies as a hemoprotein. Eur J Biochem 1998 ; 258 : 820–830. [CrossRef] [PubMed] [Google Scholar]
  20. Han AP, Yu C, Lu L, et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 2001 ; 20 : 6909–6918. [CrossRef] [PubMed] [Google Scholar]
  21. Rafie-Kolpin M, Han AP, Chen JJ. Autophosphorylation of threonine 485 in the activation loop is essential for attaining eIF2alpha kinase activity of HRI. Biochemistry 2003 ; 42 : 6536–6544. [CrossRef] [PubMed] [Google Scholar]
  22. Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 2007 ; 109 : 2693–2699. [PubMed] [Google Scholar]
  23. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest 2005 ; 115 : 1562–1570. [CrossRef] [PubMed] [Google Scholar]
  24. Lu L, Han V, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 2001 ; 21 : 7971–7980. [CrossRef] [PubMed] [Google Scholar]
  25. Chen YC, Lin-Shiau SY, Lin JK. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998 ; 177 : 324–333. [CrossRef] [PubMed] [Google Scholar]
  26. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000 ; 6 : 1099–1108. [CrossRef] [PubMed] [Google Scholar]
  27. Jiang HY, Wek SA, McGrath BC, et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 2004 ; 24 : 1365–1377. [CrossRef] [PubMed] [Google Scholar]
  28. Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012 ; 3 : 307–321. [CrossRef] [PubMed] [Google Scholar]
  29. Chen JJ. Translational control by heme-regulated eIF2alpha kinase during erythropoiesis. Curr Opin Hematol 2014 ; 21 : 172–178. [CrossRef] [PubMed] [Google Scholar]
  30. Harding HP, Wek SA, McGrath BC, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003 ; 11 : 619–633. [CrossRef] [PubMed] [Google Scholar]
  31. He CH, Yan X, Zhang H, et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 2001 ; 276 : 20858–20865. [CrossRef] [PubMed] [Google Scholar]
  32. Suragani RN, Zachariah RS, Velazquez JG, et al. Heme-regulated eIF2alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 2012 ; 119 : 5276–5284. [CrossRef] [PubMed] [Google Scholar]
  33. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 2006 ; 8 : 107–118. [CrossRef] [PubMed] [Google Scholar]
  34. Ghisolfi L, Dutt S, McConkey ME, et al. Stress granules contribute to alpha-globin homeostasis in differentiating erythroid cells. Biochem Biophys Res Commun 2012 ; 420 : 768–774. [CrossRef] [PubMed] [Google Scholar]
  35. Uma S, Hartson SD, Chen JJ, Matts RL. Hsp90 is obligatory for the heme-regulated eIF-2alpha kinase to acquire and maintain an activable conformation. J Biol Chem 1997 ; 272 : 11648–11656. [CrossRef] [PubMed] [Google Scholar]
  36. Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 1999 ; 19 : 5861–5871. [PubMed] [Google Scholar]
  37. Kim SH, Gunnery S, Choe JK, Mathews MB. Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. Oncogene 2002 ; 21 : 8741–8748. [CrossRef] [PubMed] [Google Scholar]
  38. Pataer A, Swisher SG, Roth JA, et al. Inhibition of RNA-dependent protein kinase (PKR) leads to cancer cell death and increases chemosensitivity. Cancer Biol Ther 2009 ; 8 : 245–252. [CrossRef] [PubMed] [Google Scholar]
  39. Yang YL, Reis LF, Pavlovic J, et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 1995 ; 14 : 6095–6106. [PubMed] [Google Scholar]
  40. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010 ; 29 : 3881–3895. [CrossRef] [PubMed] [Google Scholar]
  41. Atkins C, Liu Q, Minthorn E, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2013 ; 73 : 1993–2002. [CrossRef] [PubMed] [Google Scholar]
  42. Wang Y, Ning Y, Alam GN, et al. Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia 2013 ; 15 : 989–997. [CrossRef] [PubMed] [Google Scholar]
  43. Rosen MD, Woods CR, Goldberg SD, et al. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. Bioorg Med Chem Lett 2009 ; 19 : 6548–6551. [CrossRef] [PubMed] [Google Scholar]
  44. Ill-Raga G, Köhler C, Radiske A, et al. Consolidation of object recognition memory requires HRI kinase-dependent phosphorylation of eIF2alpha in the hippocampus. Hippocampus 2013 ; 23 : 431–436. [CrossRef] [PubMed] [Google Scholar]
  45. Chen T, Ozel D, Qiao Y, et al. Chemical genetics identify eIF2alpha kinase heme-regulated inhibitor as an anticancer target. Nat Chem Biol 2011 ; 7 : 610–616. [CrossRef] [PubMed] [Google Scholar]
  46. Rosenwald IB, Koifman L, Savas L, et al. Expression of the translation initiation factors eIF-4E and eIF-2 is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol 2008 ; 39 : 910–916. [CrossRef] [PubMed] [Google Scholar]
  47. Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005 ; 280 : 14189–14202. [CrossRef] [PubMed] [Google Scholar]
  48. Donze O, Deng J, Curran J, et al. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J 2004 ; 23 : 564–571. [CrossRef] [PubMed] [Google Scholar]
  49. Takahashi M, Higuchi M, Matsuki H, et al. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 2013 ; 33 : 815–829. [CrossRef] [PubMed] [Google Scholar]
  50. Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 2007 ; 5 : 29–38. [CrossRef] [PubMed] [Google Scholar]
  51. Joshi M, Kulkarni A, Pal JK. Small molecule modulators of eukaryotic initiation factor 2α kinases, the key regulators of protein synthesis. Biochimie 2013 ; 95 : 1980–1990. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.