Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 10, Octobre 2014
Page(s) 882 - 888
Section M/S Revues
Publié en ligne 14 octobre 2014
  1. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 2013 ; 85 : 1219–1226. [CrossRef] [PubMed] [Google Scholar]
  2. Dempke WC, Heinemann V. Resistance to EGF-R (erbB-1) and VEGF-R modulating agents. Eur J Cancer 2009 ; 45 : 1117–1128. [CrossRef] [PubMed] [Google Scholar]
  3. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002 ; 2 : 48–58. [CrossRef] [PubMed] [Google Scholar]
  4. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004 ; 5 : 429–441. [CrossRef] [PubMed] [Google Scholar]
  5. Arimoto K, Fukuda H, Imajoh-Ohmi S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008 ; 10 : 1324–1332. [CrossRef] [PubMed] [Google Scholar]
  6. Fournier MJ, Coudert L, Mellaoui S, et al. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013 ; 33 : 2285–2301. [CrossRef] [PubMed] [Google Scholar]
  7. Fournier MJ, Gareau C, Mazroui R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int 2010 ; 10 : 12. [CrossRef] [PubMed] [Google Scholar]
  8. Gareau C, Fournier MJ, Filion C, et al. p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011 ; 6 : e20254. [CrossRef] [PubMed] [Google Scholar]
  9. Eisinger-Mathason TS, Andrade J, Groehler AL, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008 ; 31 : 722–736. [CrossRef] [PubMed] [Google Scholar]
  10. Kim WJ, Back SH, Kim V, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005 ; 25 : 2450–2462. [CrossRef] [PubMed] [Google Scholar]
  11. Kedersha NL, Gupta M, Li W, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999 ; 147 : 1431–1442. [CrossRef] [PubMed] [Google Scholar]
  12. Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 2007 ; 21 : 3381–3394. [CrossRef] [PubMed] [Google Scholar]
  13. McInerney GM, Kedersha NL, Kaufman RJ, et al. Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol Biol Cell 2005 ; 16 : 3753–3763. [CrossRef] [PubMed] [Google Scholar]
  14. Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 2006 ; 34 : 7–11. [CrossRef] [PubMed] [Google Scholar]
  15. Kedersha N, Chen S, Gilks N, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002 ; 13 : 195–210. [CrossRef] [PubMed] [Google Scholar]
  16. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 2013 ; 70 : 3493–3511. [CrossRef] [PubMed] [Google Scholar]
  17. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005 ; 6 : 318–327. [CrossRef] [PubMed] [Google Scholar]
  18. McEwen E, Kedersha N, Song B, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005 ; 280 : 16925–16933. [CrossRef] [PubMed] [Google Scholar]
  19. Chefalo PJ, Oh J, Rafie-Kolpin M, et al. Heme-regulated eIF-2alpha kinase purifies as a hemoprotein. Eur J Biochem 1998 ; 258 : 820–830. [CrossRef] [PubMed] [Google Scholar]
  20. Han AP, Yu C, Lu L, et al. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 2001 ; 20 : 6909–6918. [CrossRef] [PubMed] [Google Scholar]
  21. Rafie-Kolpin M, Han AP, Chen JJ. Autophosphorylation of threonine 485 in the activation loop is essential for attaining eIF2alpha kinase activity of HRI. Biochemistry 2003 ; 42 : 6536–6544. [CrossRef] [PubMed] [Google Scholar]
  22. Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 2007 ; 109 : 2693–2699. [PubMed] [Google Scholar]
  23. Han AP, Fleming MD, Chen JJ. Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest 2005 ; 115 : 1562–1570. [CrossRef] [PubMed] [Google Scholar]
  24. Lu L, Han V, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 2001 ; 21 : 7971–7980. [CrossRef] [PubMed] [Google Scholar]
  25. Chen YC, Lin-Shiau SY, Lin JK. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998 ; 177 : 324–333. [CrossRef] [PubMed] [Google Scholar]
  26. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000 ; 6 : 1099–1108. [CrossRef] [PubMed] [Google Scholar]
  27. Jiang HY, Wek SA, McGrath BC, et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 2004 ; 24 : 1365–1377. [CrossRef] [PubMed] [Google Scholar]
  28. Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012 ; 3 : 307–321. [CrossRef] [PubMed] [Google Scholar]
  29. Chen JJ. Translational control by heme-regulated eIF2alpha kinase during erythropoiesis. Curr Opin Hematol 2014 ; 21 : 172–178. [CrossRef] [PubMed] [Google Scholar]
  30. Harding HP, Wek SA, McGrath BC, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003 ; 11 : 619–633. [CrossRef] [PubMed] [Google Scholar]
  31. He CH, Yan X, Zhang H, et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 2001 ; 276 : 20858–20865. [CrossRef] [PubMed] [Google Scholar]
  32. Suragani RN, Zachariah RS, Velazquez JG, et al. Heme-regulated eIF2alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 2012 ; 119 : 5276–5284. [CrossRef] [PubMed] [Google Scholar]
  33. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 2006 ; 8 : 107–118. [CrossRef] [PubMed] [Google Scholar]
  34. Ghisolfi L, Dutt S, McConkey ME, et al. Stress granules contribute to alpha-globin homeostasis in differentiating erythroid cells. Biochem Biophys Res Commun 2012 ; 420 : 768–774. [CrossRef] [PubMed] [Google Scholar]
  35. Uma S, Hartson SD, Chen JJ, Matts RL. Hsp90 is obligatory for the heme-regulated eIF-2alpha kinase to acquire and maintain an activable conformation. J Biol Chem 1997 ; 272 : 11648–11656. [CrossRef] [PubMed] [Google Scholar]
  36. Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 1999 ; 19 : 5861–5871. [PubMed] [Google Scholar]
  37. Kim SH, Gunnery S, Choe JK, Mathews MB. Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. Oncogene 2002 ; 21 : 8741–8748. [CrossRef] [PubMed] [Google Scholar]
  38. Pataer A, Swisher SG, Roth JA, et al. Inhibition of RNA-dependent protein kinase (PKR) leads to cancer cell death and increases chemosensitivity. Cancer Biol Ther 2009 ; 8 : 245–252. [CrossRef] [PubMed] [Google Scholar]
  39. Yang YL, Reis LF, Pavlovic J, et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 1995 ; 14 : 6095–6106. [PubMed] [Google Scholar]
  40. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010 ; 29 : 3881–3895. [CrossRef] [PubMed] [Google Scholar]
  41. Atkins C, Liu Q, Minthorn E, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2013 ; 73 : 1993–2002. [CrossRef] [PubMed] [Google Scholar]
  42. Wang Y, Ning Y, Alam GN, et al. Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia 2013 ; 15 : 989–997. [CrossRef] [PubMed] [Google Scholar]
  43. Rosen MD, Woods CR, Goldberg SD, et al. Discovery of the first known small-molecule inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. Bioorg Med Chem Lett 2009 ; 19 : 6548–6551. [CrossRef] [PubMed] [Google Scholar]
  44. Ill-Raga G, Köhler C, Radiske A, et al. Consolidation of object recognition memory requires HRI kinase-dependent phosphorylation of eIF2alpha in the hippocampus. Hippocampus 2013 ; 23 : 431–436. [CrossRef] [PubMed] [Google Scholar]
  45. Chen T, Ozel D, Qiao Y, et al. Chemical genetics identify eIF2alpha kinase heme-regulated inhibitor as an anticancer target. Nat Chem Biol 2011 ; 7 : 610–616. [CrossRef] [PubMed] [Google Scholar]
  46. Rosenwald IB, Koifman L, Savas L, et al. Expression of the translation initiation factors eIF-4E and eIF-2 is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol 2008 ; 39 : 910–916. [CrossRef] [PubMed] [Google Scholar]
  47. Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005 ; 280 : 14189–14202. [CrossRef] [PubMed] [Google Scholar]
  48. Donze O, Deng J, Curran J, et al. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J 2004 ; 23 : 564–571. [CrossRef] [PubMed] [Google Scholar]
  49. Takahashi M, Higuchi M, Matsuki H, et al. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 2013 ; 33 : 815–829. [CrossRef] [PubMed] [Google Scholar]
  50. Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 2007 ; 5 : 29–38. [CrossRef] [PubMed] [Google Scholar]
  51. Joshi M, Kulkarni A, Pal JK. Small molecule modulators of eukaryotic initiation factor 2α kinases, the key regulators of protein synthesis. Biochimie 2013 ; 95 : 1980–1990. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.