Free Access
Med Sci (Paris)
Volume 30, Number 8-9, Août–Septembre 2014
Page(s) 779 - 783
Section M/S Revues
Published online 01 September 2014
  1. Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012 ; 19 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  3. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014 ; 15 : 135–147. [CrossRef] [PubMed] [Google Scholar]
  4. Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science 2000 ; 290 : 989–992. [CrossRef] [PubMed] [Google Scholar]
  5. Amundson SA, Myers TG, Scudiero D, et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 2000 ; 60 : 6101–6110. [PubMed] [Google Scholar]
  6. Ni Chonghaile T, Sarosiek KA, Vo TT, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 2011 ; 334 : 1129–1133. [CrossRef] [PubMed] [Google Scholar]
  7. Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004 ; 18 : 1272–1282. [CrossRef] [PubMed] [Google Scholar]
  8. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 ; 149 : 1060–1072. [CrossRef] [PubMed] [Google Scholar]
  9. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003 ; 3 : 285–296. [CrossRef] [PubMed] [Google Scholar]
  10. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004 ; 5 : 875–885. [CrossRef] [PubMed] [Google Scholar]
  11. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007 ; 447 : 864–868. [CrossRef] [PubMed] [Google Scholar]
  12. Wolpaw AJ, Shimada K, Skouta R, et al. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA 2011 ; 108 : E771–E780. [CrossRef] [Google Scholar]
  13. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014 ; 10 : 9–17. [CrossRef] [PubMed] [Google Scholar]
  14. Lo M, Wang YZ, Gout PW. The X(c)-cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008 ; 215 : 593–602. [CrossRef] [PubMed] [Google Scholar]
  15. Lu SC. Glutathione synthesis. Biochim Biophys Acta 2013 ; 1830 : 3143–53. [CrossRef] [PubMed] [Google Scholar]
  16. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 ; 156 : 317–331. [CrossRef] [PubMed] [Google Scholar]
  17. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013 ; 1830 : 3289–3303. [CrossRef] [PubMed] [Google Scholar]
  18. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012 ; 379 : 1245–1255. [Google Scholar]
  19. Galmiche A, Chauffert B, Barbare JC.. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett 2014 ; 346 : 159–162. [CrossRef] [PubMed] [Google Scholar]
  20. Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer 2013 ; 133 : 1732–1742. [CrossRef] [PubMed] [Google Scholar]
  21. Coriat R, Nicco C, Chéreau C, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther 2012 ; 11 : 2284–2293. [CrossRef] [PubMed] [Google Scholar]
  22. Shaw AT, Winslow MM, Magendantz M, et al. Selective killing of K-Ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA 2011 ; 108 : 8773–8778. [CrossRef] [Google Scholar]
  23. Bournet B, Dufresne M, Selves J, et al. Oncogène Kras et cancer du pancréas : trente ans plus tard. Med Sci (Paris) 2013 ; 29 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013 ; 496 : 101–105. [CrossRef] [PubMed] [Google Scholar]
  25. Lyssiotis CA, Son J, Cantley LC, et al. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 2013 ; 12 : 1987–1988. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.