Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 8-9, Août–Septembre 2014
Page(s) 779 - 783
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143008016
Publié en ligne 1 septembre 2014
  1. Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013 ; 29 : 1117–1124. [CrossRef] [EDP Sciences] [PubMed]
  2. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012 ; 19 : 107–120. [CrossRef] [PubMed]
  3. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014 ; 15 : 135–147. [CrossRef] [PubMed]
  4. Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science 2000 ; 290 : 989–992. [CrossRef] [PubMed]
  5. Amundson SA, Myers TG, Scudiero D, et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 2000 ; 60 : 6101–6110. [PubMed]
  6. Ni Chonghaile T, Sarosiek KA, Vo TT, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 2011 ; 334 : 1129–1133. [CrossRef] [PubMed]
  7. Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004 ; 18 : 1272–1282. [CrossRef] [PubMed]
  8. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 ; 149 : 1060–1072. [CrossRef] [PubMed]
  9. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003 ; 3 : 285–296. [CrossRef] [PubMed]
  10. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004 ; 5 : 875–885. [CrossRef] [PubMed]
  11. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007 ; 447 : 864–868. [CrossRef] [PubMed]
  12. Wolpaw AJ, Shimada K, Skouta R, et al. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA 2011 ; 108 : E771–E780. [CrossRef]
  13. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014 ; 10 : 9–17. [CrossRef] [PubMed]
  14. Lo M, Wang YZ, Gout PW. The X(c)-cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008 ; 215 : 593–602. [CrossRef] [PubMed]
  15. Lu SC. Glutathione synthesis. Biochim Biophys Acta 2013 ; 1830 : 3143–53. [CrossRef] [PubMed]
  16. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 ; 156 : 317–331. [CrossRef] [PubMed]
  17. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013 ; 1830 : 3289–3303. [CrossRef] [PubMed]
  18. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012 ; 379 : 1245–1255. [CrossRef] [PubMed]
  19. Galmiche A, Chauffert B, Barbare JC.. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett 2014 ; 346 : 159–162. [CrossRef] [PubMed]
  20. Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer 2013 ; 133 : 1732–1742. [CrossRef] [PubMed]
  21. Coriat R, Nicco C, Chéreau C, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther 2012 ; 11 : 2284–2293. [CrossRef] [PubMed]
  22. Shaw AT, Winslow MM, Magendantz M, et al. Selective killing of K-Ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA 2011 ; 108 : 8773–8778. [CrossRef]
  23. Bournet B, Dufresne M, Selves J, et al. Oncogène Kras et cancer du pancréas : trente ans plus tard. Med Sci (Paris) 2013 ; 29 : 991–997. [CrossRef] [EDP Sciences] [PubMed]
  24. Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013 ; 496 : 101–105. [CrossRef] [PubMed]
  25. Lyssiotis CA, Son J, Cantley LC, et al. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 2013 ; 12 : 1987–1988. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.