Free Access
Med Sci (Paris)
Volume 30, Number 3, Mars 2014
Page(s) 297 - 302
Section M/S Revues
Published online 31 March 2014
  1. Rederstorff M. Une approche originale de sélection de nouveaux ARN non codants. Med Sci (Paris) 2011 ; 27 : 343–345. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Cavaille J. Des microARN comme s’il en pleuvait… Med Sci (Paris) 2004 ; 20 : 399–401. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Kawaji H, Nakamura M, Takahashi Y, et al. Hidden layers of human small RNAs. BMC Genomics 2008 ; 9 : 157. [CrossRef] [PubMed] [Google Scholar]
  4. Ender C, Krek A, Friedlander MR, et al. A human snoRNA with microRNA-like functions. Mol Cell 2008 ; 32 : 519–528. [CrossRef] [PubMed] [Google Scholar]
  5. Saraiya AA, Wang CC., snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 2008 ; 4 : e1000224. [CrossRef] [PubMed] [Google Scholar]
  6. Taft RJ, Glazov EA, Lassmann T, et al. Small RNAs derived from snoRNAs. RNA 2009 ; 15 : 1233–1240. [CrossRef] [PubMed] [Google Scholar]
  7. Brameier M, Herwig A, Reinhardt R, et al. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 2011 ; 39 : 675–686. [CrossRef] [PubMed] [Google Scholar]
  8. Kishore S, Gruber AR, Jedlinski DJ, et al. Insights into snoRNA biogenesis, processing from PAR-CLIP of snoRNA core proteins, small RNA sequencing. Genome Biol 2013 ; 14 : R45. [CrossRef] [PubMed] [Google Scholar]
  9. Scott MS, Ono M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 2011 ; 93 : 1987–1992. [CrossRef] [PubMed] [Google Scholar]
  10. Iwasaki S, Kobayashi M, Yoda M, et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010 ; 39 : 292–299. [CrossRef] [PubMed] [Google Scholar]
  11. Cavaille J, Buiting K, Kiefmann M, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 2000 ; 97 : 14311–14316. [CrossRef] [PubMed] [Google Scholar]
  12. Rederstorff M, Huttenhofer A. Small non-coding RNAs in disease development and host-pathogen interactions. Curr Opin Mol Ther 2010 ; 12 : 684–694. [PubMed] [Google Scholar]
  13. Vitali P, Cavaille J. Petits ARN C/D et syndrome de Prader-Willi. Med Sci (Paris) 2005 ; 21 : 1017–1019. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. De Smith AJ, Purmann C, Walters RG, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009 ; 18 : 3257–3265. [CrossRef] [PubMed] [Google Scholar]
  15. Duker AL, Ballif BC, Bawle EV, et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010 ; 18 : 1196–1201. [CrossRef] [PubMed] [Google Scholar]
  16. Sahoo T, del Gaudio D, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008 ; 40 : 719–721. [CrossRef] [PubMed] [Google Scholar]
  17. Schaaf CP, Gonzalez-Garay ML, Xia F, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 2013 ; 45 : 1405–1408. [CrossRef] [PubMed] [Google Scholar]
  18. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 2006 ; 311 : 230–232. [CrossRef] [PubMed] [Google Scholar]
  19. Bortolin-Cavaille ML, Cavaille J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 2012 ; 40 : 6800–6807. [CrossRef] [PubMed] [Google Scholar]
  20. Kishore S, Khanna A, Zhang Z, et al. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 2010 ; 19 : 1153–1164. [CrossRef] [PubMed] [Google Scholar]
  21. Rederstorff M, Bernhart SH, Tanzer A, et al. RNPomics: defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res 2010 ; 38 : e113. [CrossRef] [PubMed] [Google Scholar]
  22. Scott MS, Ono M, Yamada K, et al. Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res 2012 ; 40 : 3676–3688. [CrossRef] [PubMed] [Google Scholar]
  23. Kahn A. L’impérialisme des micro-ARN s’étend maintenant au cancer. Med Sci (Paris) 2005 ; 21 : 687–689. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Ladeiro Y, Zucman-Rossi J. Micro-ARN (miARN) et cancer : le cas des tumeurs hépatocellulaires. Med Sci (Paris) 2009 ; 25 : 467–472. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Liao J, Yu L, Mei Y, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 2010 ; 9 : 198. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang L, Yang M, Marks P, et al. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthritis Cartilage 2012 ; 20 : 1631–1637. [CrossRef] [PubMed] [Google Scholar]
  27. Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA - Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 2013 ; 340 : 201–211. [CrossRef] [PubMed] [Google Scholar]
  28. Su H, Xu T, Ganapathy S, et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 2013 ; doi : 10.1038/onc.2013.89. [Google Scholar]
  29. Teittinen KJ, Laiho A, Uusimaki A, et al. Expression of small nucleolar RNAs in leukemic cells. Cell Oncol (Dordr) 2013 ; 36 : 55–63. [CrossRef] [PubMed] [Google Scholar]
  30. Valleron W, Ysebaert L, Berquet L, et al. Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. Blood 2013 ; 120 : 3997–4005. [CrossRef] [Google Scholar]
  31. Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 2012 ; 12 : 84–88. [PubMed] [Google Scholar]
  32. Dong XY, Guo P, Boyd J, et al. Implication of snoRNA U50 in human breast cancer. J Genet Genomics 2009 ; 36 : 447–454. [CrossRef] [PubMed] [Google Scholar]
  33. Dong XY, Rodriguez C, Guo P, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 2008 ; 17 : 1031–1042. [CrossRef] [PubMed] [Google Scholar]
  34. Soeno Y, Fujita K, Kudo T, et al. Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression, its organ-specific phenotypic modulation. PLoS One 2013 ; 8 : e72105. [CrossRef] [PubMed] [Google Scholar]
  35. Mei YP, Liao JP, Shen J, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 2011 ; 31 : 2794–2804. [CrossRef] [PubMed] [Google Scholar]
  36. Belin S, Beghin A, Solano-Gonzalez E, et al. Dysregulation of ribosome biogenesis, translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009 ; 4 : e7147. [CrossRef] [PubMed] [Google Scholar]
  37. Buffa FM, Camps C, Winchester L, et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 2011 ; 71 : 5635–5645. [CrossRef] [PubMed] [Google Scholar]
  38. Husted S, Sokilde R, Rask L, et al. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm 2011 ; 8 : 2055–2062. [CrossRef] [PubMed] [Google Scholar]
  39. Susuki D, Kimura S, Naganuma S, et al. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci 2011 ; 102 : 2164–2171. [CrossRef] [PubMed] [Google Scholar]
  40. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009 ; 28 : 4065–4074. [CrossRef] [PubMed] [Google Scholar]
  41. Lee JJ, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 2011 ; 31 : 3818–3825. [PubMed] [Google Scholar]
  42. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001 ; 2 : 919–929. [CrossRef] [PubMed] [Google Scholar]
  43. Ono M, Scott MS, Yamada K, et al. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res 2011 ; 39 : 3879–3891. [CrossRef] [PubMed] [Google Scholar]
  44. Scott MS, Avolio F, Ono M, et al. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 2009 ; 5 : e1000507. [CrossRef] [PubMed] [Google Scholar]
  45. Dunoyer P. La bataille du silence. Med Sci (Paris) 2009 ; 25 : 505–512. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.