Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 3, Mars 2014
Page(s) 297 - 302
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143003018
Publié en ligne 31 mars 2014
  1. Rederstorff M. Une approche originale de sélection de nouveaux ARN non codants. Med Sci (Paris) 2011 ; 27 : 343–345. [CrossRef] [EDP Sciences] [PubMed]
  2. Cavaille J. Des microARN comme s’il en pleuvait… Med Sci (Paris) 2004 ; 20 : 399–401. [CrossRef] [EDP Sciences] [PubMed]
  3. Kawaji H, Nakamura M, Takahashi Y, et al. Hidden layers of human small RNAs. BMC Genomics 2008 ; 9 : 157. [CrossRef] [PubMed]
  4. Ender C, Krek A, Friedlander MR, et al. A human snoRNA with microRNA-like functions. Mol Cell 2008 ; 32 : 519–528. [CrossRef] [PubMed]
  5. Saraiya AA, Wang CC., snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 2008 ; 4 : e1000224. [CrossRef] [PubMed]
  6. Taft RJ, Glazov EA, Lassmann T, et al. Small RNAs derived from snoRNAs. RNA 2009 ; 15 : 1233–1240. [CrossRef] [PubMed]
  7. Brameier M, Herwig A, Reinhardt R, et al. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 2011 ; 39 : 675–686. [CrossRef] [PubMed]
  8. Kishore S, Gruber AR, Jedlinski DJ, et al. Insights into snoRNA biogenesis, processing from PAR-CLIP of snoRNA core proteins, small RNA sequencing. Genome Biol 2013 ; 14 : R45. [CrossRef] [PubMed]
  9. Scott MS, Ono M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 2011 ; 93 : 1987–1992. [CrossRef] [PubMed]
  10. Iwasaki S, Kobayashi M, Yoda M, et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010 ; 39 : 292–299. [CrossRef] [PubMed]
  11. Cavaille J, Buiting K, Kiefmann M, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 2000 ; 97 : 14311–14316. [CrossRef] [PubMed]
  12. Rederstorff M, Huttenhofer A. Small non-coding RNAs in disease development and host-pathogen interactions. Curr Opin Mol Ther 2010 ; 12 : 684–694. [PubMed]
  13. Vitali P, Cavaille J. Petits ARN C/D et syndrome de Prader-Willi. Med Sci (Paris) 2005 ; 21 : 1017–1019. [CrossRef] [EDP Sciences] [PubMed]
  14. De Smith AJ, Purmann C, Walters RG, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009 ; 18 : 3257–3265. [CrossRef] [PubMed]
  15. Duker AL, Ballif BC, Bawle EV, et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010 ; 18 : 1196–1201. [CrossRef] [PubMed]
  16. Sahoo T, del Gaudio D, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008 ; 40 : 719–721. [CrossRef] [PubMed]
  17. Schaaf CP, Gonzalez-Garay ML, Xia F, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 2013 ; 45 : 1405–1408. [CrossRef] [PubMed]
  18. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 2006 ; 311 : 230–232. [CrossRef] [PubMed]
  19. Bortolin-Cavaille ML, Cavaille J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 2012 ; 40 : 6800–6807. [CrossRef] [PubMed]
  20. Kishore S, Khanna A, Zhang Z, et al. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 2010 ; 19 : 1153–1164. [CrossRef] [PubMed]
  21. Rederstorff M, Bernhart SH, Tanzer A, et al. RNPomics: defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res 2010 ; 38 : e113. [CrossRef] [PubMed]
  22. Scott MS, Ono M, Yamada K, et al. Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res 2012 ; 40 : 3676–3688. [CrossRef] [PubMed]
  23. Kahn A. L’impérialisme des micro-ARN s’étend maintenant au cancer. Med Sci (Paris) 2005 ; 21 : 687–689. [CrossRef] [EDP Sciences] [PubMed]
  24. Ladeiro Y, Zucman-Rossi J. Micro-ARN (miARN) et cancer : le cas des tumeurs hépatocellulaires. Med Sci (Paris) 2009 ; 25 : 467–472. [CrossRef] [EDP Sciences] [PubMed]
  25. Liao J, Yu L, Mei Y, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 2010 ; 9 : 198. [CrossRef] [PubMed]
  26. Zhang L, Yang M, Marks P, et al. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthritis Cartilage 2012 ; 20 : 1631–1637. [CrossRef] [PubMed]
  27. Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA - Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 2013 ; 340 : 201–211. [CrossRef] [PubMed]
  28. Su H, Xu T, Ganapathy S, et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 2013 ; doi : 10.1038/onc.2013.89.
  29. Teittinen KJ, Laiho A, Uusimaki A, et al. Expression of small nucleolar RNAs in leukemic cells. Cell Oncol (Dordr) 2013 ; 36 : 55–63. [CrossRef] [PubMed]
  30. Valleron W, Ysebaert L, Berquet L, et al. Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. Blood 2013 ; 120 : 3997–4005. [CrossRef]
  31. Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 2012 ; 12 : 84–88. [PubMed]
  32. Dong XY, Guo P, Boyd J, et al. Implication of snoRNA U50 in human breast cancer. J Genet Genomics 2009 ; 36 : 447–454. [CrossRef] [PubMed]
  33. Dong XY, Rodriguez C, Guo P, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 2008 ; 17 : 1031–1042. [CrossRef] [PubMed]
  34. Soeno Y, Fujita K, Kudo T, et al. Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression, its organ-specific phenotypic modulation. PLoS One 2013 ; 8 : e72105. [CrossRef] [PubMed]
  35. Mei YP, Liao JP, Shen J, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 2011 ; 31 : 2794–2804. [CrossRef] [PubMed]
  36. Belin S, Beghin A, Solano-Gonzalez E, et al. Dysregulation of ribosome biogenesis, translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009 ; 4 : e7147. [CrossRef] [PubMed]
  37. Buffa FM, Camps C, Winchester L, et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 2011 ; 71 : 5635–5645. [CrossRef] [PubMed]
  38. Husted S, Sokilde R, Rask L, et al. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm 2011 ; 8 : 2055–2062. [CrossRef] [PubMed]
  39. Susuki D, Kimura S, Naganuma S, et al. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci 2011 ; 102 : 2164–2171. [CrossRef] [PubMed]
  40. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009 ; 28 : 4065–4074. [CrossRef] [PubMed]
  41. Lee JJ, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 2011 ; 31 : 3818–3825. [PubMed]
  42. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001 ; 2 : 919–929. [CrossRef] [PubMed]
  43. Ono M, Scott MS, Yamada K, et al. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res 2011 ; 39 : 3879–3891. [CrossRef] [PubMed]
  44. Scott MS, Avolio F, Ono M, et al. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 2009 ; 5 : e1000507. [CrossRef] [PubMed]
  45. Dunoyer P. La bataille du silence. Med Sci (Paris) 2009 ; 25 : 505–512. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.