Free Access
Med Sci (Paris)
Volume 30, Number 3, Mars 2014
Page(s) 259 - 265
Section M/S Revues
Published online 31 March 2014
  1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  2. Consortium IHGS. Finishing the euchromatic sequence of the human genome. Nature 2004 ; 431 : 931–945. [CrossRef] [PubMed] [Google Scholar]
  3. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999 ; 28 : 19–25. [CrossRef] [PubMed] [Google Scholar]
  4. Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science 2009 ; 326 : 1694–1697. [CrossRef] [PubMed] [Google Scholar]
  5. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012 ; 10 : 323–335. [PubMed] [Google Scholar]
  6. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005 ; 308 : 1635–1638. [CrossRef] [PubMed] [Google Scholar]
  7. Structure, function and diversity of the healthy human microbiome. Nature 2012 ; 486 : 207–214. [CrossRef] [PubMed] [Google Scholar]
  8. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006 ; 124 : 837–848. [CrossRef] [PubMed] [Google Scholar]
  9. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 2007 ; 14 : 169–181. [CrossRef] [PubMed] [Google Scholar]
  10. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009 ; 587 : 4153–4158. [Google Scholar]
  11. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984 ; 39 : 338–342. [Google Scholar]
  12. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 2010 ; 10 : 735–744. [CrossRef] [PubMed] [Google Scholar]
  13. Conroy ME, Shi HN, Walker WA. The long-term health effects of neonatal microbial flora. Curr Opin Allergy Clin Immunol 2009 ; 9 : 197–201. [CrossRef] [PubMed] [Google Scholar]
  14. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003 ; 361 : 512–519. [CrossRef] [PubMed] [Google Scholar]
  15. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 2012 ; 7 : e28742. [Google Scholar]
  16. Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009 ; 37 : D233–D238. [CrossRef] [PubMed] [Google Scholar]
  17. El Kaoutari A, Armougom F, Gordon JI, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013 ; 11 : 497–504. [CrossRef] [PubMed] [Google Scholar]
  18. DeVries JW. On defining dietary fibre. Proc Nutr Soc 2003 ; 62 : 37–43. [CrossRef] [PubMed] [Google Scholar]
  19. Gallant DJ, Bouchet B, Buleon A, Perez S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 1992 ; 46 Suppl 2 : S3–16. [Google Scholar]
  20. Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans, 2nd ed. Cold Spring Harbor (NY) : Cold Spring Harbor Laboratory Press, 2009. [Google Scholar]
  21. Martens EC, Lowe EC, Chiang H, et al. Recognition, degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011 ; 9 : e1001221. [CrossRef] [PubMed] [Google Scholar]
  22. Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011 ; 13 : 517–526. [CrossRef] [PubMed] [Google Scholar]
  23. Vanhoutvin SA, Troost FJ, Hamer HM, et al. Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 2009 ; 4 : e6759. [CrossRef] [PubMed] [Google Scholar]
  24. Inan MS, Rasoulpour RJ, Yin L, et al. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000 ; 118 : 724–734. [CrossRef] [PubMed] [Google Scholar]
  25. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009 ; 58 : 1509–1517. [CrossRef] [PubMed] [Google Scholar]
  26. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006 ; 444 : 1022–1023. [CrossRef] [PubMed] [Google Scholar]
  27. Zupancic ML, Cantarel BL, Liu Z, et al. Analysis of the gut microbiota in the old order Amish, its relation to the metabolic syndrome. PLoS One 2012 ; 7 : e43052. [CrossRef] [PubMed] [Google Scholar]
  28. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010 ; 18 : 190–195. [CrossRef] [PubMed] [Google Scholar]
  29. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013 ; 110 : 9066–9071. [CrossRef] [Google Scholar]
  30. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 ; 444 : 1027–1031. [CrossRef] [PubMed] [Google Scholar]
  31. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013 ; 341 : 1241214. [CrossRef] [PubMed] [Google Scholar]
  32. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006 ; 55 : 205–211. [CrossRef] [PubMed] [Google Scholar]
  33. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008 ; 105 : 16731–16736. [Google Scholar]
  34. Hansen R, Russell RK, Reiff C, et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol 2012 ; 107 : 1913–1922. [CrossRef] [PubMed] [Google Scholar]
  35. Jia W, Whitehead RN, Griffiths L, et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS Microbiol Lett 2010 ; 310 : 138–144. [CrossRef] [PubMed] [Google Scholar]
  36. Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 2007 ; 133 : 24–33. [CrossRef] [PubMed] [Google Scholar]
  37. Sjogren YM, Jenmalm MC, Bottcher MF, et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 2009 ; 39 : 518–526. [CrossRef] [PubMed] [Google Scholar]
  38. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005 ; 54 : 987–991. [CrossRef] [PubMed] [Google Scholar]
  39. Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 2009 ; 63 : 1277–1289. [CrossRef] [PubMed] [Google Scholar]
  40. Scott KP, Martin JC, Chassard C, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin, starch. Proc Natl Acad Sci USA 2011 ; 108 : suppl 1 4672–4679. [CrossRef] [Google Scholar]
  41. McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011 ; 3 : 106ra. [CrossRef] [Google Scholar]
  42. Borody TJ, Warren EF, Leis S, et al. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 2003 ; 37 : 42–47. [CrossRef] [PubMed] [Google Scholar]
  43. Bernardo P, Albina E, Eloit M, Roumagnac P. Métagénomique virale et pathologie. Med Sci (Paris) 2013 ; 21 : 501–508. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Burcelin R, Chabo C, Blasco-Baque V, et al. Le microbiote intestinal à l’origine de nouvelles perspectives thérapeutiques pour les maladies métaboliques ? Med Sci (Paris) 2013 ; 29 : 800–806. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Korneychuk N. Les cellules lymphoïdes innées contrôlent la réponse adaptative aux bactéries commensales intestinales. Med Sci (Paris) 2014 ; 30 : 253–257. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.