Free Access
Med Sci (Paris)
Volume 30, Number 2, Février 2014
Page(s) 166 - 172
Section M/S Revues
Published online 24 February 2014
  1. Owen RD. Immunological consequences of vascular anastomoses between bovine twins. Science 1945 ; 102 : 400. [CrossRef] [PubMed] [Google Scholar]
  2. Cannon JA, Longmire WP. Studies of successful skin homografts in the chicken. Ann Surg 1952 ; 135 : 60–68. [CrossRef] [PubMed] [Google Scholar]
  3. Billingham RE, Brent L, Medawar PB., Actively acquired tolerance of foreign cells. Nature 1952 ; 172 : 603. [CrossRef] [Google Scholar]
  4. Gammon G, Dunn K, Shastri N, et al. Neonatal T-cell tolerance to minimal immunogenic peptides is caused by clonal inactivation. Nature 1986 ; 319 : 413–415. [CrossRef] [PubMed] [Google Scholar]
  5. Burnet FM. Immunological recognition of self. Science 1961 ; 133 : 307–311. [CrossRef] [PubMed] [Google Scholar]
  6. Dorsch S, Roser B. T cells mediate transplantation tolerance. Nature 1975 ; 258 : 233–235. [CrossRef] [PubMed] [Google Scholar]
  7. Feng HM, Glasebrook AL, Engers HD, et al. Clonal analysis of T cell unresponsiveness to alloantigens induced by neonatal injection of F1 spleen cells into parental mice. J Immunol 1983 ; 131 : 2165–2169. [PubMed] [Google Scholar]
  8. Powel TJ, Streilein JW. In vitro suppression of cytotoxic T cell generation by lymphocytes from mice rendered neonatally tolerant of class II MHC alloantigens. Transplantation 1991 ; 52 : 383–386. [CrossRef] [PubMed] [Google Scholar]
  9. Forsthuber T, Yip HC, Lehman PV. Induction of Th1 and Th2 immunity in neonatal mice. Science 1996 ; 271 : 1728–1730. [CrossRef] [PubMed] [Google Scholar]
  10. Rose S, Lichtenheld M, Foote MR, et al. Murine neonatal CD4+ cells are poised for rapid Th2 effector-like function. J Immunol 2007 ; 178 : 2667–2678. [PubMed] [Google Scholar]
  11. Le Moine A, Flamand V, de Lavareille A, et al. Hypereosinophilic syndrome induced by neonatal immunization against MHC class II alloantigen: critical role of IL-4. Eur J Immunol 2002 ; 32 : 174–181. [CrossRef] [PubMed] [Google Scholar]
  12. Donckier V, Wissing M, Bruyns C, et al. Critical role of interleukin 4 in the induction of neonatal transplantation tolerance. Transplantation 1995 ; 59 : 1571–1576. [CrossRef] [PubMed] [Google Scholar]
  13. Donckier V, Flamand V, Desalle F, et al. IL-12 prevents neonatal induction of transplantation tolerance in mice. Eur J Immunol 1998 ; 28 : 1426–1430. [CrossRef] [PubMed] [Google Scholar]
  14. Flamand V, Donckier V, Demoor F, et al. CD40 ligation prevents neonatal induction of transplantation tolerance. J Immunol 1998 ; 160 : 4666–4669. [PubMed] [Google Scholar]
  15. Lotteau V. La période de tolérance néonatale existe-t-elle ? Med Sci (Paris) 1996 ; 12 : 983–987. [CrossRef] [Google Scholar]
  16. Goriely S, De Wit D, Flamand V, et al. Les réponses immunes à médiation cellulaire chez le nouveau-né : vers des nouvelles stratégies vaccinales ciblant les cellules dendritiques ? Med Sci (Paris) 2001 ; 17 : 1337–1341. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Adkins B, Du RQ. Newborn mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses. J Immunol 1998 ; 160 : 4217–4224. [PubMed] [Google Scholar]
  18. Lee H-H, Hoeman CM, Hardaway JC, et al. Delayed maturation of an IL-12-producing dendritic cells subset explains the early Th2 bias in neonatal immunity. J Exp Med 2008 ; 205 : 2269–2280. [CrossRef] [PubMed] [Google Scholar]
  19. Hofstetter HH, Kovalovsky A, Shive CL, et al. Neonatal induction of myelin-specific Th1/Th17 immunity does not result in experimental autoimmune encephalomyelitis and can protect against the disease in adulthood. J Neuroimmunol 2007 ; 187 : 20–30. [CrossRef] [PubMed] [Google Scholar]
  20. Debock I, Delbauve S, Dubois A, et al. Th17 alloimmunity prevents neonatal establishment of lymphoid chimerism in IL-4-deprived mice. Am J Transplant 2012 ; 12 : 81–89. [CrossRef] [PubMed] [Google Scholar]
  21. Newcomb D, Zhou W, Moore ML, et al. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol 2009 ; 182 : 5317–5321. [CrossRef] [PubMed] [Google Scholar]
  22. Powell TJ, Streilein JW. In vitro suppression of cytotoxic T cell generation by lymphocytes from mice rendered neonatally tolerant of class II MHC alloantigens. Transplantation 1991 ; 52 : 383–386. [CrossRef] [PubMed] [Google Scholar]
  23. Gao Q, Rouse TM, Kazmerzak K, et al. CD4+CD25+ cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation 1999 ; 68 : 1891–1897. [CrossRef] [PubMed] [Google Scholar]
  24. Wang G, Miyahara Y, Guo Z, et al. « Default » generation of neonatal regulatory T cells. J Immunol 2010 ; 185 : 71–78. [CrossRef] [PubMed] [Google Scholar]
  25. Sun CM, Deriaud E, Leclerc C, et al. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity 2005 ; 22 : 467–477. [CrossRef] [PubMed] [Google Scholar]
  26. Walker WE. Goldstein Dr B cells are dispensable for neonatal transplant tolerance induction. Transplantation 2009 ; 88 : 874–878. [CrossRef] [PubMed] [Google Scholar]
  27. Vukmanovic-Stejic M, Thomas MJ, Noble A, et al. Specificity, restriction and effector mechanisms of immunoregulatory CD8 T cells. Immunology 2001 ; 102 : 115–122. [CrossRef] [PubMed] [Google Scholar]
  28. Adams B, Nagy N, Paulart F, et al. CD8+ T lymphocytes regulating Th2 pathology escape neonatal tolerization. J Immunol 2003 ; 171 : 5071–5076. [PubMed] [Google Scholar]
  29. Adams B, Dubois A, Delbauve S, et al. Expansion of regulatory CD8+CD25+ T cells after neonatal alloimmunization. Clin Exp Immunol 2010 ; 163 : 354–361. [CrossRef] [PubMed] [Google Scholar]
  30. De Lavareille A, Prigogine C, Paulart F, et al. Regulatory role of host CD8+ T lymphocytes in experimental graft-versus-host disease across a single major histocompatibility complex class II incompatibility. Transplantation 2005 ; 80 : 1293–1299. [CrossRef] [PubMed] [Google Scholar]
  31. Berg RE, Crossley E, Murray S, et al. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med 2003 ; 198 : 1583–1593. [CrossRef] [PubMed] [Google Scholar]
  32. Dubois A, Deruytter N, Adams B, et al. Regulation of Th2 responses and allergic inflammation through bystander activation of CD8+ T lymphocytes in early life. J Immunol 2010 ; 185 : 884–891. [CrossRef] [PubMed] [Google Scholar]
  33. Andrassy J, Kusaka S, Jankowska-Gan E, et al. Tolerance to noninherited maternal MHC antigens in mice. J Immunol 2003 ; 171 : 5554–5561. [PubMed] [Google Scholar]
  34. Mold JI, Michaëlsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008 ; 322 : 1562–1565. [CrossRef] [PubMed] [Google Scholar]
  35. Roy E, Leduc M, Guegan S, et al. Specific maternal microchimeric T cells targeting fetal antigens in beta cells predispose to auto-immune diabetes in the child. J Autoimmun 2011 ; 36 : 253–262. [CrossRef] [PubMed] [Google Scholar]
  36. Dutta P, Molitor-Dart M, Bobadilla JL, et al. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 2009 ; 114 : 3578–3587. [CrossRef] [PubMed] [Google Scholar]
  37. Debock I, Flamand V. Th2 alloimmunity counteracts Th17-type response in the neonatal establishment of lymphoid chimerism. Chimerism 2011 ; 2 : 117–119. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.