Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 1, Janvier 2014
|
|
---|---|---|
Page(s) | 93 - 98 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143001019 | |
Published online | 24 January 2014 |
- Geldard FA, Sherrick CE. The cutaneous rabbit: a perceptual illusion. Science 1972 ; 178 : 178–179. [CrossRef] [PubMed] [Google Scholar]
- Blankenburg F, Ruff CC, Deichmann R, et al. The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biol 2006 ; 4 : e69. [CrossRef] [PubMed] [Google Scholar]
- Miyazaki M, Hirashima M, Nozaki D. The cutaneous rabbit hopping out of the body. J Neurosci 2010 ; 30 : 1856–1860. [CrossRef] [PubMed] [Google Scholar]
- Gao P, Bermejo R, Zeigler PH. Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J Neurosci 2001 ; 21 : 5374–5380. [PubMed] [Google Scholar]
- Woolsey TA, van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 1970 ; 17 : 205–242. [CrossRef] [PubMed] [Google Scholar]
- Killackey HP, Belford GR. The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol 1979 ; 183 : 285–303. [CrossRef] [PubMed] [Google Scholar]
- Simons DJ. Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 1985 ; 54 : 615–635. [PubMed] [Google Scholar]
- Carvell GE, Simons DJ. Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 1990 ; 10 : 2638–2648. [PubMed] [Google Scholar]
- Ritt JT, Andermann ML, Moore CI. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing Rats. Neuron 2008 ; 57 : 599–613. [CrossRef] [PubMed] [Google Scholar]
- Moore CI, Nelson SB. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 1998 ; 80 : 2882–2892. [PubMed] [Google Scholar]
- Zhu JJ, Connors BW. Intrinsic firing patterns and whisker evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 1999 ; 81 : 1171–1183. [PubMed] [Google Scholar]
- Erchova I, Jacob V, Ego-Stengel V, et al. Multiwhisker suppressive interactions in the rat barrel cortex described by a MAX operator. Soc Neurosci Abstract 2006 ; 144 : 17. [Google Scholar]
- Petersen RS, Diamond ME. Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J Neurosci 2000 ; 20 : 6135–6143. [PubMed] [Google Scholar]
- Mirabella G, Battiston S, Diamond ME. Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 2001 ; 11 : 164–170. [CrossRef] [PubMed] [Google Scholar]
- Bringuier V, Chavane F, Glaeser L, et al. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 1999 ; 283 : 695–699. [CrossRef] [PubMed] [Google Scholar]
- Shimegi S, Ichikawa T, Akasaki T, et al. Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 1999 ; 19 : 10164–10175. [PubMed] [Google Scholar]
- Ego-Stengel V, Souza TM, Jacob V, et al. Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. J Neurophysiol 2005 ; 93 : 1450–1467. [CrossRef] [PubMed] [Google Scholar]
- Jacob V, Le Cam J, Ego-Stengel V, et al. Emergent properties of tactile scenes selectively activate barrel cortex neurons. Neuron 2008 ; 60 : 1112–1125. [CrossRef] [PubMed] [Google Scholar]
- Jacob V, Estebanez L, Le Cam J, et al. The matrix: a new tool for probing the whisker-to-barrel system with natural stimuli. J Neurosci Methods 2010 ; 189 : 65–74. [CrossRef] [PubMed] [Google Scholar]
- Ego-Stengel V, Le Cam J, Shulz DE. Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system. J Neurosci 2012 ; 32 : 3339–3351. [CrossRef] [PubMed] [Google Scholar]
- Estebanez L, El Boustani S, Destexhe A, et al. Correlated input reveals coexisting coding schemes in a sensory cortex. Nat Neurosci 2012 ; 12 : 1691–1699. [CrossRef] [Google Scholar]
- Op de Beeck HP, Haushofer J, Kanwisher NG. Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 2008 ; 9 : 123–135. [CrossRef] [PubMed] [Google Scholar]
- Geldard, FA. Saltation in somesthesis. Psychol Bull 1982 ; 92 : 136–175. [CrossRef] [PubMed] [Google Scholar]
- Jones JP, Palmer LA. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 1987 ; 58 : 1187–1211. [PubMed] [Google Scholar]
- DeAngelis GC, Ohzawa I, Freeman RD. Receptive-field dynamics in the central visual pathways. Trends Neurosci 1995 ; 18 : 451–458. [CrossRef] [PubMed] [Google Scholar]
- Jenison RL, Schnupp JW, Reale RA, et al. Auditory space-time receptive field dynamics revealed by spherical white-noise analysis. J Neurosci 2001 ; 21 : 4408–4415. [PubMed] [Google Scholar]
- Ringach DL. Mapping receptive fields in primary visual cortex. J Physiol 2004 ; 558 : 717–728. [CrossRef] [PubMed] [Google Scholar]
- Rust NC, Schwartz O, Movshon JA, et al. Spatiotemporal elements of macaque v1 receptive fields. Neuron 2005 ; 46 : 945–956. [CrossRef] [PubMed] [Google Scholar]
- Schwartz O, Pillow JW, Rust NC, et al. Spike-triggered neural characterization. J Vision 2006 ; 6 : 484–507. [CrossRef] [Google Scholar]
- Geffen MN, Broome BM, Laurent G, et al. Neural encoding of rapidly fluctuating odors. Neuron 2009 ; 61 : 570–586. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.